041_IX_SA2_30_A1 QP Mathematics.p65
Transcript
041/IX/SA2/30/A1 Class - IX MATHEMATICS Time : 3 to 3½ hours âר : 3 âð 3½ æÅUð Maximum Marks : 80 ¥çÏ·¤Ì× ¥´·¤ : 80 Total No. of Pages : 11 ·é¤Ü ÂëcÆUæð´ ·¤è â´Øæ : 11 General Instructions : All questions are compulsory. 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 questions of 1 mark each, Section - B comprises of 8 questions of 2 marks each, Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each. 3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four. 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 4 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions. 5. Use of calculators is not permitted. 6. An additional 15 minutes time has been allotted to read this question paper only. w .e du rit e .c om 1. w âæ×æØ çÙÎðüàæ Ñ âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð 2. §â ÂýàÙ-Âæ ×ð´ 34 ÂýàÙ ãñ´, Áæð w 1. ¿æÚU ¹ÇUæð´ ×ð´ ¥, Õ, â ß Î ×ð´ çßÖæçÁÌ ãñÐ ¹ÇU - ¥ ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ¹ÇU - Õ ×ð´ 8 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·ð¤ ãñ´, ¹ÇU - â ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 3 ¥´·¤æð´ ·¤æ ãñ, ¹ÇU - Î ×ð´ 6 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 4 ¥´·¤æð´ ·¤æ ãñÐ ÂýàÙ 1 ¥´·¤ ·¤æ ãñ, 3. ÂýàÙ â´Øæ 1 âð 10 Õãéçß·¤ËÂèØ ÂýàÙ ãñ´Ð çΰ »° ¿æÚU çß·¤ËÂæð´ ×ð´ âð °·¤ âãè çß·¤Ë 4. §â×ð´ ·¤æð§ü Öè âßæðüÂçÚU çß·¤Ë Ùãè´ ãñ, Üðç·¤Ù ¥æ´ÌçÚU·¤ çß·¤Ë 1 ÂýàÙ 2 ¥´·¤æð´ ×ð´, 4 ÂýàÙ 3 ¥´·¤æð´ ×ð´ ¥æñÚU 2 ÂýàÙ ¿éÙð´Ð 4 ¥´·¤æð´ ×ð´ çΰ »° ãñ´Ð ¥æÂ çΰ »° çß·¤ËÂæð´ ×ð´ âð °·¤ çß·¤Ë ·¤æ ¿ØÙ ·¤Úð´UÐ ßçÁüÌ ãñÐ 5. ·ñ¤Ü·é¤ÜðÅUÚU ·¤æ ÂýØæð» 6. §â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15 ç×ÙÅU ·¤æ âר çÎØæ »Øæ ãñÐ ¥æñÚU ßð ©æÚU-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ 1 §â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ÀUææ ·ð¤ßÜ ÂýàÙ-Âæ ·¤æð Âɸð´»ð SECTION - A Question numbers 1 to 10 carry 1 mark each. For each of the questions 1 to 10, four alternative choices have been provided of which only one is correct. You have to select the correct choice. 1. 2. Which of the following is not a linear equation ? (A) ax1by1c50 (B) 0x10y1c50 (C) 0x1by1c50 (D) ax10y1c50 Which of the following is a solution of the equation 4x13y516 ? (A) (B) (1, 4) (C) (2, 4) (D) (1, 3) In figure, PQRS is a rectangle. If ∠RPQ5308 then the value of (x 1 y) is (A) (B) 1208 (C) 1508 (D) 1808 (C) (c) (D) (d) du Two polygons have the same area in figure : 5. (B) (b) Two consecutive angles of a parallelogram are in the ratio 1 : 3, then the smaller angle is : (A) 6. (a) w (A) w w .e 4. 908 rit e .c om 3. (2, 3) 508 (B) 908 (C) 608 (D) 458 In figure, PQRS is a parallelogram in which ∠PSR51258 , ∠RQT is equal to (A) 758 041/IX/SA2/30/A1 (B) 658 (C) 2 558 (D) 1258 7. The diagonals of rhombus are 12 cm and 16 cm. The length of the side of rhombus is (A) 8. 12 cm (C) 16 cm (D) 8 cm 20 cm2 (B) 100 cm2 (C) 50 cm2 (D) 70 cm2 The length of the longest pole that can be put in a room of dimensions 10 m 3 10 m 3 5 m. (A) 10. (B) The length of the diagonal of the square is 10 cm. The area of the square is (A) 9. 10 cm 15 m (B) 16 m (C) 10 m (D) 12 m (D) 20.5 The range of the data 25.7, 16.3, 2.8, 21.7, 24.3, 22.7, 24.9 is (A) 22 (B) 22.9 (C) 21.7 om SECTION - B Question numbers 11 to 18 carry 2 marks each Find the mean of factors of 24. 12. The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find the cost of painting the walls of the room and ceiling at the rate of Rs. 50 per m2. 13. How many litres of water flow out through a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in pipe is 30 cm/sec. 14. Two parallel chords of a circle whose diameter is 13 cm are respectively 5 cm and 12 cm. Find the distance between them if they lie on opposite sides of centre. 15. In a paralleloram, show that the angle bisectors of two adjacent angles intersect at right angle. 16. The angle between the two attitudes of parallelogram through the vertex of an obtuse angle is 508. Find the angles of parallelogram. w w w .e du rit e .c 11. OR D is the mid point of side BC of DABC and E is the mid point of AD, then show that ar (BED) 5 1 ar (ABC) 4 17. Two congruent circles intersect each other at points A and B. Through A a line segment PAQ is drawn so that P and Q lie on the two circles. Prove that BP 5 BQ. 18. Express y in terms x in equation 2x23y512. Find the points where the line represented by this equation cuts x-axis and y-axis. 041/IX/SA2/30/A1 3 SECTION - C Question numbers 19 to 28 carry 3 marks each Draw the graph of two lines whose equations are 3x22y1650 and x12y2650 on the same graph paper. Find the area of the triangle formed by two lines and x-axis. 20. The taxi fare in a city is as follows. For the first kilometre, the fare is Rs. 8 and for the subsequent distance it is Rs. 5 per km. Taking the distance covered as x km and total fare as Rs. y. Write a linear equation for this information and calculate from the equation total fare of 15 km distance. 21. Construct a DABC in which AB55.8 cm, BC1CA58.4 cm and ∠B 5 608 . 22. In figure, ABCD is a parallelogram. The circle through A, B and C intersects CD produced at E. Prove that AE 5 AD. 23. XY is a line parallel to side BC of DABC. BE ?? AC and CF ?? AB meets XY is E and F respectively. Show that ar(ABE)5ar(ACF). OR w w w .e du rit e .c om 19. In figure, ABCD is a trapezium in which AB ?? DC. E is the mid point of AD and F is a point on BC such that EF ?? DC. Prove that F is the mid point of BC. 24. From a right circular cylinder with height 8 cm and radius 6 cm, a right circular cone of the same height and base is removed. Find the total surface area of the remaining solid. 25. How many spherical lead shots each 4.2 cm diameter can be obtained from a solid cuboid of lead with dimensions 66 cm, 42 cm and 21 cm. OR An iron pipe 20 cm long has external diameter equal to 25 cm. If the thickness of the pipe is 1 cm, find the total surface area of the pipe. 041/IX/SA2/30/A1 4 26. Three unbiased coins are tossed together. Find the probability of getting (i) two heads (ii) at least two heads (iii) no head OR A bag contains 12 balls out of which x are white. If one ball is taken out from the bag, find the probability of getting a white ball. If 6 more white balls are added to the bag and the probability now for getting a white ball is double the previous one, find the value of x. 27. The marks obtained by 40 students of class IX in Mathematics are given below : 81, 55, 68, 79, 85, 43, 29, 68, 54, 73, 47, 35, 72, 64, 95, 44, 50, 77, 64, 35, 79, 52, 45, 54, 70, 83, 62, 64, 72, 92, 84, 76, 63, 43, 54, 38, 73, 68, 52, 54 Prepare a frequency distribution table with class - size of 10 marks. Find the median of the following data 19, 25, 59, 48, 35, 37, 30, 32, 51. rit e SECTION - D .c If 25 is replaced by 52 what will be the new median. om 28. 29. Solve for x, OR w w .e 4(x 1 2) 3x 2 5 25x 1 7 1 5 3 5 15 du Question numbers 29 to 34 carry 4 marks each w A and B are friends. A is elder to B by 5 years. Bs sister C is half the age of B while As father D is 8 years older than twice the age of B. If the present age of D is 48 years, find the present ages of A, B and C. 30. Prove that the parallelograms on the same base and beween the same parallels are equal in area. OR Diagonals AC and BD of a trapezium ABCD with AB ?? DC intersect each other at O. Prove that ar(DAOD) 5 ar(DBOC) 31. Draw a histogram of frequency polygon for the following data Marks 10 - 15 No. of students 7 041/IX/SA2/30/A1 15 - 20 9 20 - 25 8 5 25 - 30 5 30 - 40 12 40 - 60 12 60 - 80 8 32. In figure, diagonals AC and BD of quadrilateral ABCD intersect at O, such that OB5OD. If AB5CD show that (i) (ii) (iii) ar (DOC) 5 ar (AOB) ar (DCB) 5 ar (ACB) ABCD is a parallelogram. In figure, two circles intersect at B and C. Through B two line segments ABD and PBQ are drawn to intersect the circles at A, D, and P, Q respectively. Prove that ∠ACP5∠QCD . 34. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of graphite is 1 mm. If the length of the pencil is 14 cm. Find the volume of wood and that of graphite. -oOo- w w w .e du rit e .c om 33. 041/IX/SA2/30/A1 6 ¹ÇU - ·¤ ÂýàÙ â´Øæ 1 âð 10 Ì·¤ ÂýØð·¤ ·ð¤ çܰ 1 ¥´·¤ ãñÐ 1 âð 10 Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤ çܰ ¿æÚU çß·¤Ë çΰ ãé° ãñ´ çÁÙ×ð´ âð °·¤ çß·¤Ë âãè ãñÐ ¥æÂ·¤æð âãè çß·¤Ë ·¤æ ¿ØÙ ·¤ÚUÙæ ãñÐ 1. 2. (A) ax1by1c50 (B) 0x10y1c50 (C) 0x1by1c50 (D) ax10y1c50 çÙÙçÜç¹Ì ×ð´ âð ·¤æñÙ, â×è·¤ÚUæ 4x13y516 ·¤æ °·¤ ãÜ ãñ? (A) (1, 4) (2, 3) (B) (C) (2, 4) (D) (1, 3) Îè ãé§ü ¥æ·ë¤çÌ ×ð´ PQRS °·¤ ¥æØÌ ãñÐ ØçÎ ∠RPQ5308 , Ìæð (x 1 y) ·¤æ ×æÙ ãñ Ñ (A) (B) 1208 1508 (D) 1808 (C) (c) (D) (d) du ¥æ·ë¤çÌ ×ð´ Îæð ÕãéÖéÁæð´ ·¤æ ÿæðæÈ¤Ü â×æÙ ãñÐ (C) 5. (B) (b) °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ·ð¤ Îæð ·ý¤×æ»Ì ·¤æðææð´ ·¤æ ¥ÙéÂæÌ 1 : 3 ãñÐ ÀUæðÅðU ·¤æðæ ·¤æ ×æÂ ãñ Ñ (A) 6. (a) w (A) w w .e 4. 908 rit e .c om 3. çÙÙçÜç¹Ì ×ð´ âð ·¤æñÙ ÚñUç¹·¤ â×è·¤ÚUæ Ùãè´ ãñ? 508 (B) 908 (C) 608 (D) 458 ¥æ·ë¤çÌ ×ð´ PQRS °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ãñ çÁâ×ð´ ∠PSR51258 , ∠RQT ·¤æ ×æÂ ãñ Ñ (A) 758 041/IX/SA2/30/A1 (B) 658 (C) 7 558 (D) 1258 7. °·¤ â׿ÌéÖüéÁ ·ð¤ çß·¤æü 12 âð×è °ß´ 16 âð×è ãñÐ â׿ÌéÖüéÁ ·¤è ÖéÁæ ·¤è ÜÕæ§ü ãñ Ñ (A) 10 âð×è (B) 12 âð×è (C) 16 âð×è (D) 8 âð×è 8. °·¤ ß»ü ·ð¤ çß·¤æü ·¤è ÜÕæ§ü 10 âð×è ãñ, Ìæð ©â ß»ü ·¤æ ÿæðæÈ¤Ü ãñ Ñ (A) 20 ß»ü âð×è (B) 100 ß»ü âð×è (C) 50 ß»ü âð×è 9. °·¤ ·¤×ÚðU ·¤è çß׿°¡ 10 ×è.310 (A) 10. 15 ×è (B) ×è. ãñ´Ð ©â ×ð´ ÚU¹ð Áæ â·¤Ùð ßæÜð ¹Õð ·¤è ¥çÏ·¤Ì× ÜÕæ§ü ãñ Ñ 16 ×è (C) 10 ×è (D) 12 ×è ×è.35 ¥æ¡·¤Ç¸æð´ 25.7, 16.3, 2.8, 21.7, 24.3, 22.7, 24.9 ·¤è ÂýâæÚU ãñ Ñ (A) 22 (B) 22.9 (C) 21.7 11. 24 12. °·¤ ·¤×ÚðU ·¤è ÜÕæ§ü, ¿æñǸæ§ü °ß´ ª¡¤¿æ§ü ·ý¤×àæÑ °ß´ 13 âð×è ãñ´Ð 50 L¤Â° ÂýçÌ ß»ü ×èÅUÚU ·¤è ÎÚU âð 30 âð×è ×ð´ ©â Âæ§ü âð ç·¤ÌÙð ÜèÅUÚU ÂæÙè Õãð»æ? ÃØæâ ßæÜð ßëæ ·¤è Îæð â׿´ÌÚU Áèßæ°´ ·ý¤×àæÑ .e 14. 1 ç×ÙÅU 3 ×è âð×è ãñÐ ØçÎ ©â Âæ§Â ×ð´ ÂæÙè ·ð¤ ÕãÙð ·¤è »çÌ du ÂýçÌ âð·¤ÇU ãñ, Ìæð ææÌ ·¤èçÁ° ç·¤ 5 ß»ü 20.5 rit e ·¤×ÚðU ·¤è ÀUÌ °ß´ ÎèßæÚUæð´ ÂÚU ÂðÅU ·¤ÚUæÙð ·¤æ ÃØØ ææÌ ·¤èçÁ°Ð °·¤ Âæ§ü ·ð¤ ¥ÙéÂýSÍ ÂçÚUÀðUÎ ·¤æ ÿæðæÈ¤Ü .c ·ð¤ »éæÙ¹´ÇUæð´ ·¤æ ×æØ ææÌ ·¤èçÁ°Ð 5 ×è, 4 ×è (D) om ¹ÇU - ¹ ÂýàÙ â´Øæ 11 âð 18 Ì·¤ ÂýØð·¤ ·ð¤ çܰ 2 ¥´·¤ ãñ´Ð 13. 70 ß»ü âð×è (D) 5 âð×è °ß´ 12 âð×è ãñ´Ð ØçÎ Áèßæ°¡ ·ð¤Îý çÕÎé ·ð¤ çâh ·¤èçÁ° ç·¤ °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ·ð¤ Îæð â´ÜÙ ·¤æðææð´ ·ð¤ ·¤æðæ â×çmÖæÁ·¤ ÂÚUSÂÚU â×·¤æðæ ÂÚU ÂýçÌÀðUÎ 16. w ·¤ÚUÌð ãñ´Ð w 15. w â×é¹ (çßÂÚUèÌ) Âÿææð´ ×ð´ çSÍÌ ãñ, Ìæð ©Ù·ð¤ Õè¿ ·¤è ÎêÚUè ææÌ ·¤èçÁ°Ð °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ·ð¤ ¥çÏ·¤ ·¤æðæ ßæÜð àæèáü âð ÕÙæ° »° Îæð Ü´Õæð´ ·ð¤ Õè¿ ·¤æ ·¤æðæ ¿ÌéÖüéÁ ·ð¤ ·¤æðæ ææÌ ·¤èçÁ°Ð 508 ãñÐ â׿´ÌÚU ¥Íßæ °·¤ çæÖéÁ ABC ×ð´ D ÌÍæ E ·ý¤×àæÑ BC °ß´ AD ·ð¤ ר çÕÎé ãñ´, Ìæð çâh ·¤èçÁ° ç·¤ ÿæðæÈ¤Ü (BED) 5 17. 1 ÿæðæÈ¤Ü (ABC) 4 Îæð âßæZ»â× ßëæ ÂÚUSÂÚU çÕÎ饿ð´ A ÌÍæ B ÂÚU ÂýçÌÀðUÎ ·¤ÚUÌð ãñ´Ð çÕÎé A âð °·¤ ÚðU¹æ¹´ÇU PAQ §â Âý·¤æÚU ÕÙæØæ ÁæÌæ ãñ ç·¤ çÕÎé P ÌÍæ Q çßçÖóæ ßëææð´ ÂÚU çSÍÌ ãñ´Ð çâh ·¤èçÁ° ç·¤ BP 5 BQ. 18. â×è·¤ÚUæ 2x23y512 ·¤è âãæØÌæ âð y ·¤æð x ·ð¤ M¤Â ×ð´ ÃØÌ ·¤èçÁ°Ð ©Ù çÕÎé¥æð´ ·ð¤ çÙÎðüàææ´·¤ ææÌ ·¤èçÁ° Áãæ¡ ÂÚU §â â×è·¤ÚUæ mæÚUæ çÙM¤çÂÌ ÚðU¹æ x-¥ÿæ °ß´ y-¥ÿæ ·¤æð ·¤æÅUÌè ãñÐ 041/IX/SA2/30/A1 8 ¹ÇU - » ÂýàÙ â´Øæ 19 âð 28 Ì·¤ ÂýØð·¤ ÂýàÙ 3 ¥´·¤ ·¤æ ãñÐ 19. 20. °·¤ ãè »ýæÈ¤ ÂðÂÚU ÂÚU â×è·¤ÚUææð´ 3x22y1650 °ß´ x12y2650 ·ð¤ ¥æÜð¹ ÕÙæ§°Ð §Ù Îæð ÚðU¹æ¥æð´ °ß´ x-¥ÿæ mæÚUæ çæÚUè ãé§ü çæÖéÁ ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð °·¤ àæãÚU ×ð´ ÂýÍ× ç·¤Üæð×èÅUÚU ·¤æ ÅñUâè ç·¤ÚUæØæ 8 L¤ÂØð ãñ ¥æñÚU ©â·ð¤ ÕæÎ ·¤è ÎêÚUè ·¤æ ç·¤ÚUæØæ 5 L¤ÂØð ÂýçÌ y L¤ÂØð ×æÙ ÜèçÁ°Ð §â ç·¤Üæð×èÅUÚU ãñÐ ÌØ ·¤è »§ü ·é¤Ü ÎêÚUè ·¤æð x ç·¤Üæð×èÅUÚU ¥æñÚU ·é¤Ü ç·¤ÚUæØð ·¤æð ÁæÙ·¤æÚUè ·ð¤ çܰ °·¤ ÚñUç¹·¤ â×è·¤ÚUæ çÜç¹° ¥æñÚU ©â â×è·¤ÚUæ ·¤è âãæØÌæ âð 15 ç·¤Üæð×èÅUÚU ·¤æ ç·¤ÚUæØæ ææÌ ·¤èçÁ°Ð âð×è °ß´ ∠B 5 60 8 ãñ´Ð °·¤ çæÖéÁ 22. ¥æ·ë¤çÌ ×ð´ ABCD °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ãñÐ ãñÐ çâh ·¤èçÁ° ç·¤ AE 5 AD. 23. °·¤ çæÖéÁ ABC ×ð´ ÚðU¹æ XY ÖéÁæ BC ·ð¤ â׿´ÌÚU ãñÐ BE ?? AC °ß´ CF ?? AB, ÚðU¹æ XY ·¤æð ·ý¤×àæÑ E °ß´ A, B ÌÍæ C âð ÁæÙð ߿ܿ ßëæ CD ·¤æð ÕÉUæÙð ÂÚU, E ÂÚU ç×ÜÌæ om ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ×ð´ ç×ÜÌè ãñ´Ð çâh ·¤èçÁ° ç·¤ ÿæðæÈ¤Ü (ABE)5ÿæðæÈ¤Ü (ACF). ¥Íßæ w w w .e F ÂÚU du rit e .c ABC AB55.8 âð×è, BC1CA58.4 21. ¥æ·ë¤çÌ ×ð´ ABCD °·¤ â×Ü´Õ ãñ çÁâ×ð´ AB ?? DCÐ çÕÎé E ÖéÁæ AD ·¤æ ר çÕÎé ãñ ¥æñÚU ÖéÁæ BC ÂÚU °·¤ çÕÎé F §â Âý·¤æÚU ãñ ç·¤ EF ?? DC çâh ·¤èçÁ° ç·¤ çÕÎé F ÖéÁæ BC ·¤æ ר çÕÎé ãñÐ 24. 8 âð×è ª¡¤¿æ§ü ¥æñÚU 6 âð×è çæØæ ßæÜð °·¤ ÜÕ ßëæèØ ÕðÜÙ âð ©ÌÙè ãè ª¡¤¿æ§ü °ß´ ©ÌÙè ãè ¥æÏæÚU çæØæ ·¤æ ÜÕ ßëæèØ àæ´·é¤ çÙ·¤æÜ çÜØæ ÁæÌæ ãñÐ 25. 66 âð×è, 42 âð×è °ß´ ç·¤° Áæ â·¤Ìð ãñ´Ð 20 âð×è 21 àæðá ÆUæðâ ·¤æ ·é¤Ü ÂëDèØ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð âð×è çß׿¥æð´ ßæÜð çâ·ð¤ ·¤è ÆUæðâ æÙæÖ âð ç·¤ÌÙð ¥Íßæ 4.2 âð×è ÃØæâ ßæÜð »æðÜð Âýæ# ÜÕæ§ü ßæÜð °·¤ Üæðãð ·ð¤ Âæ§ü ·¤æ Õæs ÃØæâ 25 âð×è ãñÐ ØçÎ Âæ§ü ·¤è ׿ðÅUæ§ü 1 âð×è ãñ, Ìæð Âæ§ü ·¤æ ·é¤Ü ÂëDèØ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð 041/IX/SA2/30/A1 9 26. ÌèÙ çÙcÂÿæ çâ·ð¤ °·¤ âæÍ ©ÀUæÜð ÁæÌð ãñ´Ð çÙÙçÜç¹Ì ·¤æð Âýæ# ·¤ÚUÙð ·¤è ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ°Ð (i) Îæð ç¿æ (ii) ·¤× âð ·¤× Îæð ç¿æ (iii) ·¤æð§ü ç¿æ Ùãè´ ¥Íßæ °·¤ ÍñÜð ×ð´ 12 »ð´Îð´ ãñ´ çÁÙ×ð´ âð x »ð´Îð´ âÈð¤Î Ú´U» ·¤è ãñ´Ð ØçÎ ÍñÜð ×ð´ âð °·¤ »ð´Î çÙ·¤æÜè Áæ°, Ìæð âÈð¤Î »ð´Î Âýæ# ·¤ÚUÙð ·¤è ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ°Ð ØçÎ ©â ÍñÜð ×ð´ 6 âÈð¤Î Ú´U» ·¤è »ð´Îð´ ¥æñÚU ÚU¹ Îè Áæ°´ ¥æñÚU ¥Õ âÈð¤Î Ú´U» ·¤è »ð´Î Âýæ# ·¤ÚUÙð ·¤è ÂýæçØ·¤Ìæ Âêßü ·¤è ÂýæçØ·¤Ìæ âð Îé»Ùè ãñ, Ìæð x ·¤æ ×æÙ ææÌ ·¤èçÁ°Ð 27. IX ·ð¤ 40 çßlæçÍüØæð´ mæÚUæ »çæÌ ×ð´ Âýæ# ¥´·¤ çÙÙ Âý·¤æÚU ãñ´ Ñ 81, 55, 68, 79, 85, 43, 29, 68, 54, 73, 47, 35, 72, 64, 95, 44, 50, 77, 64, 35, 79, 52, 45, 54, 70, 83, 62, 64, 72, 92, 84, 76, 63, 43, 54, 38, 73, 68, 52, 54 ·¤ÿæ °·¤ °ðâè ÕæÚ´UÕæÚUÌæ Õ´ÅUÙ âæÚUæè ÌñØæÚU ·¤èçÁ° çÁâ×ð´ ß»ü ¥æ·¤æÚU 28. 10 ¥´·¤ ·¤æ ãæðÐ çÙÙçÜç¹Ì ¥æ¡·¤Ç¸æð´ ·¤æ ×æØ·¤ ææÌ ·¤èçÁ° Ñ 19, 25, 59, 48, 35, 37, 30, 32, 51. 25 ·ð¤ SÍæÙ ÂÚU 52 ¥æ Áæ° Ìæð ÙØæ ×æØ·¤ Øæ ãæð»æ? om ØçÎ .c ¹ÇU - æ x ·ð¤ çܰ ãÜ ·¤èçÁ° Ñ ¥Íßæ .e 4(x 1 2) 3x 2 5 25x 1 7 1 5 3 5 15 du 29. rit e ÂýàÙ â´Øæ 29 âð 34 Ì·¤ ÂýØð·¤ ·ð¤ çܰ 4 ¥´·¤ ãñ´Ð ç׿ ãñ´Ð A ·¤è ¥æØé B ·¤è ¥æØé âð 5 ßáü ¥çÏ·¤ ãñ´Ð B ·¤è ÕãÙ C ·¤è ¥æØé B ·¤è ¥æØé ·¤æ ¥æÏæ ãñÐ ÁÕç·¤ A ·ð¤ çÂÌæÁè D ·¤è ¥æØé B ·¤è ¥æØé ·ð¤ Îé»Ùð âð 8 ßáü ¥çÏ·¤ ãñÐ ØçÎ D ·¤è ßÌü×æÙ ¥æØé 48 ßáü ãñ, Ìæð A, B °ß´ C ·¤è ßÌü×æÙ ¥æØé ææÌ ·¤èçÁ°Ð çâh ·¤èçÁ° ç·¤ °·¤ ãè ¥æÏæÚU ¥æñÚU Îæð â׿´ÌÚU ÚðU¹æ¥æð´ ·ð¤ Õè¿ ÕÙð â׿´ÌÚU ¿ÌéÖüéÁæð´ ·¤æ ÿæðæÈ¤Ü â×æÙ ãæðÌæ ãñÐ w 30. w w A ¥æñÚU B ¥Íßæ °·¤ â×Ü´Õ ABCD çÁâ×ð´ AB ?? DC, ·ð¤ çß·¤æü AC ÌÍæ BD ÂÚUSÂÚU çÕÎé O ÂÚU ÂýçÌÀðUÎ ·¤ÚUÌð ãñ´Ð çâh ·¤èçÁ° ç·¤ ÿæðæÈ¤Ü 31. (DAOD)5ÿæðæÈ¤Ü(DBOC) çÙÙçÜç¹Ì ¥æ¡·¤Ç¸æð´ ·ð¤ çܰ °·¤ ¥æØÌ ç¿æ °ß´ ÕæÚ´UÕæÚUÌæ ÕãéÖéÁ ÕÙæ§° Ñ •¥∑§ ÁfllÊÁÕ¸ÿÊ¥ ∑§Ë ‚¥ÅÿÊ 041/IX/SA2/30/A1 10 - 15 15 - 20 20 - 25 25 - 30 30 - 40 40 - 60 60 - 80 7 9 8 5 12 12 8 10 32. ÂÚU §â Âý·¤æÚU ÂýçÌÀðUÎ ·¤ÚUÌð ãñ´ ç·¤ 4 ¥æ·ë¤çÌ ×ð´ Îæð ßëæ ÂÚUSÂÚU çÕÎé B ÌÍæ C ÂÚU ÂýçÌÀðUÎ ·¤ÚUÌð ãñ´Ð çÕÎé B âð Îæð ÚðU¹æ¹´ÇU ABD °ß´ PBQ, ßëææð´ 4 ¥æ·ë¤çÌ ×ð´ ¿ÌéÖüéÁ ABCD OB5OD ØçÎ AB5CD çâh ·¤èçÁ° ç·¤ 33. ·ð¤ çß·¤æü AC ÌÍæ BD ÂÚUSÂÚU çÕÎé O Ìæð (i) ÿæðæÈ¤Ü (DOC) 5 ÿæðæÈ¤Ü (AOB) (ii) ÿæðæÈ¤Ü (DCB) 5 ÿæðæÈ¤Ü (ACB) (iii) ABCD °·¤ â׿´ÌÚU ¿ÌéÖüéÁ ãñÐ °·¤ ÜñÇU Âð´çâÜ ·¤æð ÕÙæÙð ·ð¤ çܰ °·¤ Ü·¤Ç¸è ·ð¤ ÕðÜÙ ·ð¤ ¥´ÎÚU »ýðȤæ§üÅU ·ð¤ ÆUæðâ ÕðÜÙ ·¤æð çȤÅU ç·¤Øæ »Øæ ãñÐ Âñ´çâÜ ·¤æ ÃØæâ 7 ç×Üè×èÅUÚU °ß´ »ýðȤæ§üÅU ·¤æ ÃØæâ 1 ç×Üè×èÅUÚU ãñÐ ØçÎ Âñ´çâÜ ·¤è ÜÕæ§ü 14 âð×è ãñ, Ìæð Ü·¤Ç¸è °ß´ »ýðȤæ§üÅU ·¤æ ¥æØÌÙ ææÌ ·¤èçÁ°Ð -oOo- w w w .e 34. du rit e .c om ·¤æð ·ý¤×àæÑ A, D ÌÍæ P, Q ÂÚU ÂýçÌÀðUÎ ·¤ÚUÌð ãé° ÕÙæ° ÁæÌð ãñ´Ð çâh ·¤èçÁ° ç·¤ ∠ACP5∠QCD . 041/IX/SA2/30/A1 11 4
Documenti analoghi
10th 1040123_C1 Mathematics QP.p65
Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select
one correct option out of the given four.
JSR 030 Set 2 Mathematics.p65
°·¤ °ðâð ¥æØÌæ·¤æÚU Âæ·ü¤ ·¤æð ÕÙæÙæ ãñ çÁâ·¤è ¿æñǸæ§ü §â·¤è Ü´Õæ§ü âð 3 ×è. ·¤× ãñÐ §â·¤æ
ÿæðæÈ¤Ü ÂãÜð âð çÙç×üÌ â×çmÕæãé çæÖéÁæ·¤æÚU Âæ·ü¤ çÁâ·¤æ ¥æÏæÚU ¥æØÌæ·¤æÚU Âæ·ü¤ ·¤è
¿æñǸæ§ü ·ð¤ ÕÚUæÕ...
1040119 C1
Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select
one correct option out of the given four.
NET Physical Education (Paper II)
This paper contains fifty (50) multiple-choice questions, each question carrying
two (2) marks. Attempt all of them.
learncbse.in learncbse.in
Given here is a sketch of a leaf partially covered with black paper and which is to be
used in the experiment to show that light is compulsory for the process of photosynthesis.
At the end of the e...
learncbse.in learncbse.in
Given here is a sketch of a leaf partially covered with black paper and which is to be
used in the experiment to show that light is necessary for the process of photosynthesis.
At the end of the ex...
D 8005 PAPER III.p65
Âý·¤æØæü×·¤ M¤Â âð â×æÙ ãñ´Ð ÂÚÌé §Ù Îæð ÿæðææð´ ·¤è ß»èü·¤Úææ×·¤ çßçàæcÅÌæ°¡ SÂcÅÌØæ çÖóæ ãæðÌè ãñ´, ¥ÌÑ
â×æÙ Öêç× ÿæðæ ×ð´ ÒÅñâæÓ çÖóæ ãæð´»ð Øæð´ç·¤ §Ù·¤æ §çÌãæâ çÖóæ ãñÐ Òçß·ð¤çÚØð´â Õæ...
087_X_SA2_05_A1 QP Social Science.p65
ÖæÚUÌ ·ð¤ ÚðU¹æ ׿Ùç¿æ ÂÚU ÌèÙ Üÿææ A, B, C ç¿çãÌ ç·¤° »° ãñ´Ð Ùè¿ð Îè »§ü âê¿Ùæ¥æð´ ·ð¤ ¥æÏæÚU ÂÚU §Ù
Üÿæææð´ ·¤è Âã¿æÙ ·¤èçÁ° ¥æñÚU ׿Ùç¿æ ÂÚU ç¿çãÌ ÚðU¹æ ÂÚU ©Ù·ð¤ âãè Ùæ× çÜç¹°Ð