1040119 C1
Transcript
1040119 - C1 Class - X MATHEMATICS Time : 3 to 3½ hours ¥çÏ·¤Ì× âר : 3 âð 3½ æÅUð Maximum Marks : 80 ¥çÏ·¤Ì× ¥´·¤ : 80 Total No. of Pages : 11 ·é¤Ü ÂëcÆUæð´ ·¤è â´Øæ : 11 General Instructions : 1. All questions are compulsory. 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 questions of 1 mark each. Section - B comprises of 8 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each. 3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four. 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions. 5. Use of calculator is not permitted. 6. An additional 15 minutes time has been allotted to read this question paper only. âæ×æØ çÙÎðüàæ Ñ 1. âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð 2. §â ÂýàÙÂæ ×ð´ 34 ÂýàÙ ãñ´, Áæð ¿æÚU ¹ÇUæð´ ×ð´ ¥, Õ, â ß Î ×ð´ çßÖæçÁÌ ãñÐ ¹ÇU - ¥ ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ ¹ÇU - Õ ×ð´ 8 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·ð¤ ãñ´Ð ¹ÇU - â ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 3 ¥´·¤æð´ ·¤æ ãñÐ ¹ÇU - Î ×ð´ 6 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 4 ¥´·¤æð´ ·¤æ ãñÐ 3. ÂýàÙ â´Øæ 1 âð 10 Õãéçß·¤ËÂèØ ÂýàÙ ãñ´Ð çΰ »° ¿æÚU çß·¤ËÂæð´ ×ð´ âð °·¤ âãè çß·¤Ë ¿éÙð´Ð 4. §â×ð´ ·¤æð§ü Öè âßæðüÂçÚU çß·¤Ë Ùãè´ ãñ, Üðç·¤Ù ¥æ´ÌçÚU·¤ çß·¤Ë 1 ÂýàÙ 2 ¥´·¤æð´ ×ð´, 3 ÂýàÙ 3 ¥´·¤æð´ ×ð´ ¥æñÚU 2 ÂýàÙ 4 ¥´·¤æð´ ×ð´ çΰ »° ãñ´Ð ¥æÂ çΰ »° çß·¤ËÂæð´ ×ð´ âð °·¤ çß·¤Ë ·¤æ ¿ØÙ ·¤Úð´UÐ 5. ·ñ¤Ü·é¤ÜðÅUÚU ·ð¤ ÂýØæð» ßçÁüÌ ãñÐ 6. §â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15 ç×ÙÅU ·¤æ âר çÎØæ »Øæ ãñÐ §â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ÀUææ ·ð¤ßÜ ÂýàÙ-Âæ ·¤æð Âɸð´»ð ¥æñÚU ßð ©æÚU-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ 1 P.T.O. SECTION A Question numbers 1 to 10 carry 1 mark each. 1. If the HCF of 65 and 117 is expressible in the form 65m2117, then the value of m is : (A) 2. 3. 5. 1 (D) (B) Composite number (C) An odd prime number (D) An odd composite number 3 1 1 If a, b are zeroes of x224x11, then 9: is : 9 : 3 (B) 5 (C) 25 (D) 23 One equation of a pair of dependent linear equations is 25x17y52, the second equation can be : (A) 10x114y1450 (B) 210x214y1450 (C) 210x114y1450 (D) 10x214y524 If sina5 1 and a is acute, then (3cosa24cos3a) is equal to : 2 0 If in DABC and DDEF B5 E (B) 1 2 (C) 1 6 (D) 21 B5 D (D) A5 F AB BC , then they will be similar if : DE FD (B) A5 D (C) If xcos A51 and tan A5y, then x22y2 is equal to : (A) 8. (C) Prime number (A) 7. 2 (A) (A) 6. (B) 119221112 is : (A) 4. 4 tan A (B) 1 (C) 0 (D) 2tan A 2 cos 2A21 (C) 2 sin2A21 (D) 2 sin2A11 [cos4A2sin4A] is equal to : (A) 2 cos2A11 1040119 - C1 (B) 2 9. The value of the expression [(sec2u21)(12cosec2u)] is : (A) 10. 21 (B) 1 (C) 0 (D) 1 2 (D) None If mode of a data is 45, mean is 27, then median is : (A) 30 (B) 27 (C) 33 SECTION B Question numbers 11 to 18 carry 2 marks each. 11. Find the LCM of 336 and 54 by prime factorisation method. 12. Find the zeroes of the quadratic polynomial 4x227. 13. Solve : 99x1101y5499 101x199y5501 14. If D, E are points on the sides AB and AC of DABC such that AD56 cm, BD59 cm, AE58 cm, EC512 cm. Prove that DE??BC. 15. If the areas of two similar triangles are equal, prove that they are congruent. 16. Find the value of the expression cos30 sin60 1 cos60 sin30 OR If A and B are acute angles such that cosA5cosB. Show that A5 B. 17. Find the mode of the given data : Class Interval Frequency 18. 0 - 20 20 - 40 40 - 60 60 - 80 15 6 18 10 Find the median of following given data : x 6 7 5 2 10 9 3 f 9 12 8 13 11 14 7 1040119 - C1 3 P.T.O. SECTION C Question numbers 19 to 28 carry 3 marks each. 19. Prove that 2 3 4 is an irrational number. 20. Prove that the square of any positive integer is of the form 3m or 3m11 for some integer m. 21. Check whether the polynomial g (x)5x 3 23x11 is the factor of polynomial p (x)5x 524x 31x 213x11 OR Solve for x and y : mx2ny5m21n2 ; x2y52n 22. Find values of a and b for which the system of linear equations has infinite number of solutions : (a1b)x22by55a12b11 ; 3x2y514 23. In fig. 1, BL and CM are medians of DABC right angled at A. 4(BL21CM2)55BC2 1040119 - C1 4 Prove that 24. ar (DFE) Find ar (CFB) In fig.2, DE??BC and AD : DB55 : 4. OR Two Isosceles triangles have equal vertical angles and their areas are in the ratio 16 : 25. Find ratio of their corresponding heights. x y y2 y x2 x cosu1 sinu51 and sinu2 cosu51, prove that 2 2 2 a b b a a b 25. If 26. C § AB · sec . If A, B, C are interior angles of DABC, prove that cosec ¨ © 2 ¸¹ 2 OR If sin (2A1458)5cos (3082A), Find A. 27. The daily expenditure of 100 families are given below. Calculate f1 and f2, if the mean daily expenditure is Rs. 188. Expenditure 140 - 160 160 - 180 180 - 200 200 - 220 220 - 240 No. of families 28. 5 25 5 f2 f1 Compute the median for the following data : Class Interval Cumulative Frequency 1040119 - C1 Less than 20 Less than 30 Less than 40 Less than 50 Less than 60 Less than 70 Less than 80 Less than 90 Less than 100 0 4 16 30 46 66 82 92 100 5 P.T.O. SECTION D Question numbers 29 to 34 carry 4 marks each. 29. Prove that sin6u1cos6u5123sin2ucos2u. 30. The sum of a 2 digit number and number obtained by reversing the order of digits is 99. If the digits of the number differ by 3. Find the number. OR A sailor goes 8 km downstream in 40 minutes and returns in 1 hour. Find the speed of sailor in still water and the speed of current. 31. State and prove converse of Pythagoras theorem. 32. Draw less than and more than ogive for the following distribution and hence obtain the median. Marks No. of students 33. 30 - 40 14 40 - 50 6 50 - 60 10 60 - 70 20 70 - 80 30 Solve the following system of linear equations graphically : 2(x21)5y and x13y515. Also find the coordinates of points where lines meet the y-axis. 34. In DABC, B5908 AB53 cm and BC54cm. Find (i) sin C (ii) cos C (iii) sec A OR If tanA5 1 , DABC is right angled at B. 3 Find the value of sinA cosC1cosA sinC. -o0o- 1040119 - C1 6 (iv) cosec A 80 - 90 8 90 - 100 12 ¹ÇU - ¥ ÂýàÙ â´Øæ 1 âð 10 Ì·¤ ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ 1. ØçÎ (A) 2. 3. 5. (C) 1 ÖæØ â´Øæ (C) çßá× ¥ØæØ â´Øæ (D) çßá× ÖæØ â´Øæ ØçÎ a, b (D) 3 (D) 23 ãñÐ (B) x224x11 ·ð¤ àæêØ·¤ ãæð´ Ìæð 3 (B) 1 1 9: 9 : 5 ·¤æ ×æÙ ãæð»æ Ñ (C) 25 ØçÎ Îæð Øé× ÚñUç¹·¤ â×è·¤ÚUæ Áæð °·¤ ÎêâÚðU ÂÚU ¥æçæÌ ãñ´ ©Ù×ð´ âð °·¤ ØçÎ 25x17y52 ãæð Ìæð ÎêâÚUæ ãñ Ñ (A) 10x114y1450 (B) 210x214y1450 (C) 210x114y1450 (D) 10x214y524 ØçÎ sina5 1 2 ÌÍæ a °·¤ ØêÙ·¤æðæ ãæð ÌÕ (3cosa24cos3a) ãñ Ñ 0 DABC ÌÍæ DDEF ×ð´, (B) 1 2 AB BC DE FD B5 E (B) (C) 1 6 (D) 21 B5 D (D) A5 F ÌÕ ßã ÎæðÙæð´ â×M¤Â ãæð´»ð ØçÎ Ñ A5 D (C) ØçÎ x cos A51 ÌÍæ tan A5y ÌÕ x22y2 ·ð¤ ÕÚUæÕÚU ãñ Ñ (A) 8. 2 ¥ÖæØ â´Øæ (A) 7. (B) M¤Â ×ð´ ÃØÌ ç·¤Øæ ÁæØ Ìæð m ·¤æ ×æÙ ãæð»æ Ñ (A) (A) 6. 4 119221112 (A) 4. 65 ÌÍæ 117 ·¤æ HCF 65 m2117 ·ð¤ tan A [cos4A2sin4A] ÕÚUæÕÚU (A) 2 cos 2A11 1040119 - C1 (B) 1 (C) 0 (D) 2tan A 2 cos 2A21 (C) 2 sin2A21 (D) 2 sin2A11 ãñ Ñ (B) 7 P.T.O. 9. [(sec2u21)(12cosec2u)] ·¤æ (A) 10. 21 ×æÙ ãñ Ñ (B) 1 (C) 0 (D) 1 2 (D) ·¤æð§ü Ùãè´ ØçÎ ¥æ¡·¤ÇUæð´ ·¤æ ÕãéÜ·¤ 45 ÌÍæ ×æØ 27 ãæð Ìæð ×æçØ·¤æ ãæð»è Ñ (A) 30 (B) 27 (C) 33 ¹ÇU-Õ ÂýàÙ â´Øæ 11 âð 18 Ì·¤ ÂýØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·¤æ ãñÐ 11. ¥ÖæØ »éæÙ¹´ÇU mæÚUæ 336 ÌÍæ 54 ·¤æ LCM (Ü.â.ß.) ææÌ ·¤ÚUæðÐ 12. 4x227 çmææÌ 13. ãÜ ·¤ÚUæð Ñ 14. ØçÎ 15. ØçÎ Îæð â×M¤Â çæÖéÁæð´ ·¤æ ÿæðæÈ¤Ü ÕÚUæÕÚU ãæð Ìæð çâh ·¤èçÁ° ç·¤ ßð âßæZ»â× ãñÐ 16. çÙÙ ·¤æ ×æÙ ææÌ ·¤èçÁ° Ñ ÕãéÂÎ ·ð¤ àæêØ·¤ ææÌ ·¤ÚUæðÐ 99x1101y5499 101x199y5501 ×ð´ D ÌÍæ E çÕÎé ÖéÁæ AB ÌÍæ AC ×ð´ §â Âý·¤æÚU ãæð´ ç·¤ AD56 âð.×è., BD59 âð.×è., AE58 âð.×è. ÌÍæ EC512 âð.×è. çâh ·¤èçÁ° Ñ DE??BC. DABC cos30 sin60 1 cos60 sin30 ¥Íßæ ØçÎ 17. A ÌÍæ B ØêÙ·¤æðæ çÙÙ ¥æ¡·¤ÇUæð´ ·¤æ ÕãéÜ·¤ ææÌ ·¤ÚUæðРƢãr³Á<Íà ¼ÍÁ<¼ ÍÁ<³ Í 18. §â Âý·¤æÚU ãñ ç·¤ cosA5cosB Ìæð Îàææü§° 0 - 20 20 - 40 40 - 60 60 - 80 15 6 18 10 çÙÙ ¥æ¡·¤ÇUæð´ ·¤è ×æçØ·¤æ ææÌ ·¤ÚUæðÐ x 6 7 5 2 10 9 3 f 9 12 8 13 11 14 7 1040119 - C1 8 A5 B. ¹ÇU - â ÂýàÙ â´Øæ 19 âð 28 Ì·¤ ÂýØð·¤ ÂýàÙ 3 ¥´·¤æð´ ·¤æ ãñÐ 19. çâh ·¤èçÁ° ç·¤ 20. çâh ·¤èçÁ° ç·¤ ÏÙæ×·¤ ÂêææZ·¤ ·¤æ ß»ü 3m, 3m11 ·ð¤ M¤Â ×ð´ ãæð»æÐ Áãæ¡ m °·¤ ÂêææZ·¤ ãñÐ 21. Áæ¡¿ ·¤èçÁ° ç·¤ g(x)5x323x11 ÕãéÂÎ p(x)5x524x31x213x11 ·¤æ »éæÙ¹´ÇU ãñÐ 2 3 4 °·¤ ¥ÂçÚU×ðØ â´Øæ ãñÐ ¥Íßæ x 22. ÌÍæ y ·ð¤ çÜØð ãÜ ·¤ÚUæð Ñ mx2ny5m21n2 ; x2y52n a ÌÍæ b ·¤æ ×æÙ ææÌ ·¤ÚUæð çÁâ·ð¤ çÜØð ÚñUç¹·¤ â×è·¤ÚUæ ·ð¤ ¥ÙÌ ãÜ ãæð´Ð (a1b)x22by55a12b11 ; 3x2y514 23. ¥æ·ë¤çÌ (1) ×ð´ BL ÌÍæ CM, DABC ·¤è, çÁâ·¤æ 4(BL21CM2)55BC2 1040119 - C1 A 9 â×·¤æðæ ãñ, ç·¤ ×æçØ·¤æ ãñÐ çâh ·¤èçÁ° Ñ P.T.O. 24. ¥æ·ë¤çÌ (2) ×ð´ DE??BC ÌÍæ AD : DB55 : 4 æÍ×ͯà (DFE) æÍ×ͯà (CFB) Ìæð ææÌ ·¤èçÁ° ¥Íßæ Îæð â×çmÕæãé çæÖéÁæð´ ·ð¤ àæèáü ·¤æðæ â×æÙ ãñ, ÌÍæ ©Ù·ð¤ ÿæðæÈ¤Ü ·¤æ ¥ÙéÂæÌ 16 : 25 ãñÐ Ìæð ©Ù·¤è â´»Ì ÖéÁæ¥æð´ ·¤æ ¥ÙéÂæÌ ææÌ ·¤ÚUæðÐ x y cosu1 sinu51 a b ÌÍæ y x sinu2 cosu51, b a 25. ØçÎ çâh ·¤èçÁ° 26. ØçÎ A, B, C ç·¤âè DABC ·ð¤ ¥ÌÑ ·¤æðæ ãæð´ Ìæð çâh ·¤èçÁ° y2 2 a2 b2 x2 C § AB · cosec ¨ sec . ¸ © 2 ¹ 2 ¥Íßæ ØçÎ sin(2A1458)5cos(3082A) Ìæð A ·¤æ ×æÙ ææÌ ·¤èçÁ°Ð 27. 100 ÂçÚUßæÚUæð´ ãæðÐ ·¤æ ÎñçÙ·¤ ¹¿ü Ùè¿ð çÎØæ »Øæ ãñÐ ¦ã ©ÎÁ<ÆÍÁ<Í× ÏÉh¿Í 28. f1 ÌÍæ f2 ·¤æ ×æÙ ææÌ ·¤èçÁ° ØçÎ ×Ø×æÙ ¹¿ü 188 L¤ÂØæ 140 - 160 160 - 180 180 - 200 200 - 220 220 - 240 5 25 f1 5 f2 çÙÙ ¥æ¡·¤ÇUæð´ ·¤è ×æçØ·¤æ ææÌ ·¤ÚUæðРƢãr³Á<Íà ɦ¿Ï¼ÍÁ<¼ÍÁ<³Í 1040119 - C1 É× ¾ É× ¾ 20 30 0 4 É× ¾ 40 16 É× ¾ 50 30 10 É× ¾ 60 46 É× ¾ 70 66 É× ¾ 80 82 É× ¾ 90 92 É× ¾ 100 100 ¹ÇU-Î ÂýàÙ â´Øæ 29 âð 34 Ì·¤ ÂýØð·¤ ÂýàÙ 4 ¥´·¤æð´ ·¤æ ãñÐ 29. çâh ·¤èçÁ° sin6u1cos6u5123sin2ucos2u. 30. 2 ¥´·¤æð´ âð ÕÙè â´Øæ ÌÍæ ©Ù·ð¤ ¥´·¤æð´ ·¤æð ÂÜÅUÙð ·ð¤ ÕæÎ ÕÙè â´Øæ ·¤æ Øæð» 99 ãñÐ ØçÎ ©Ù·ð¤ ¥´·¤æð´ ·¤æ ¥ÌÚU 3 ãæð Ìæð â´Øæ ææÌ ·¤ÚUæðÐ ¥Íßæ °·¤ Ùæçß·¤ 8 ç·¤.×è. ÂæÙè ·ð¤ ¥Ùé·é¤Ü ÁæÙð ×ð´ 40 ç×ÙÅU Ü»æÌæ ãñ ÌÍæ ÂýçÌ·é¤Ü ¿ÜÙð ×ð´ 1 æ´ÅUæ Ü»æÌæ ãñÐ Ùæçß·¤ ·¤è »çÌ çSÍÚU ÂæÙè ×ð´ ÌÍæ ÁÜ Âýßæã ·¤è »çÌ Öè ææÌ ·¤èçÁ°Ð 31. Âæ§Íæ»æðÚUâ Âý×ðØ çܹæð, ÌÍæ §â ·¤æð çâh ·¤èçÁ°Ð 32. çÙÙ ÕæÚ´UÕæÚUÌæ Õ´ÅUÙ ·ð¤ çÜØð Ò·¤× Âý·¤æÚU ·¤æÓ ÌÍæ Ò¥çÏ·¤ Âý·¤æÚU ·¤æÓ ÎæðÙæð´ ÌæðÚUæ ¹è´¿·¤ÚU ×æçØ·¤æ çÙ·¤æçÜØðÐ ÎÆSÍδã¿Í×ÏÉh¿Í 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 14 6 10 20 30 8 12 33. çÙÙ ÚñUç¹·¤ â×è·¤ÚUææð´ ·¤æð »ýæÈ¤ mæÚUæ ãÜ ·¤ÚUæð Ñ 2(x21)5y ÌÍæ x13y515. ÌÍæ ©â çÕÎé ·ð¤ çÙÎðüàææ´·¤ ææÌ ·¤ÚUæð Áæð ÚðU¹æØð´ y-¥ÿæ ÂÚU ç×ÜÌè ãñÐ 34. DABC ×ð´ B5908, AB53 âð.×è. (i) sin C (ii) ÌÍæ BC54 âð.×è. ãñÐ ×æÙ ææÌ ·¤èçÁ°Ð cos C (iii) sec A (iv) cosec A ¥Íßæ UDABC â×·¤æðæ çæÖéÁ ×ð´ B â×·¤æðæ ãñ ÌÍæ ØçÎ tanA5 1 3 Ìæð sinA cosC1cosA sinC ·¤æ ×æÙ ææÌ ·¤ÚUæðÐ -o0o- 1040119 - C1 11 P.T.O.
Documenti analoghi
10th 1040123_C1 Mathematics QP.p65
Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select
one correct option out of the given four.
087_X_SA2_05_A1 QP Social Science.p65
Class - X
SOCIAL SCIENCE
Time : 3 hours
âר Ñ 3 æÅðU
D 8005 PAPER III.p65
ÕãéÌ ·¤× Üæð» Ì·ü¤-çßÌ·ü¤ ·¤Úð´»ð ç·¤ ÂæçÚçSÍçÌ·¤ â´ÎÖü ×ð´ ¥Èý¤è·¤æ ÌÍæ âæ©Í ¥×ðçÚ·¤æ ·ð¤ ßáüæ-Âý¿éÚ ßÙ
Âý·¤æØæü×·¤ M¤Â âð â×æÙ ãñ´Ð ÂÚÌé §Ù Îæð ÿæðææð´ ·¤è ß»èü·¤Úææ×·¤ çßçàæcÅÌæ°¡ SÂcÅÌØæ ...
D 0605 PAPER II.p65
Who introduced for the first time the Quaternary settlement in Bengal ?
(A)
JSR 030 Set 2 Mathematics.p65
°·¤ ÃØçæ °·¤ ÁÜØæÙ ·ð¤ ÇñU·¤, Áæð ÂæÙè ·ð¤ SÌÚU âð 10 ×è. ª¡¤¿æ ãñ, âð °·¤ ÂãæÇ¸è ·ð¤
çàæ¹ÚU ·¤æ ©óæØÙ ·¤æðæ 608 ÌÍæ ÂãæÇ¸è ·ð¤ ÌÜ ·¤æ ¥ßÙ×Ù ·¤æðæ 308 ÂæÌæ ãñÐ ÂãæÇ¸è âð
ÁÜØæÙ ·¤è ÎêÚUè ÌÍæ Âãæ...
041_IX_SA2_30_A1 QP Mathematics.p65
°·¤ ÍñÜð ×ð´ 12 »ð´Îð´ ãñ´ çÁÙ×ð´ âð x »ð´Îð´ âÈð¤Î Ú´U» ·¤è ãñ´Ð ØçÎ ÍñÜð ×ð´ âð °·¤ »ð´Î çÙ·¤æÜè Áæ°, Ìæð âÈð¤Î »ð´Î
Âýæ# ·¤ÚUÙð ·¤è ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ°Ð ØçÎ ©â ÍñÜð ×ð´ 6 âÈð¤Î Ú´U» ·¤è »ð´Îð´...