JSR 030 Set 2 Mathematics.p65
Transcript
SET-2 Series JSR ·¤æðÇU Ù´. Code No. ÚUæðÜ Ù´. 30/2 ÂÚUèÿææÍèü ·¤æðÇU ·¤æð ©æÚU-ÂéçSÌ·¤æ ·ð¤ ×é¹-ÂëcÆU ÂÚU ¥ßàØ çܹð´Ð Roll No. Candidates must write the Code on the title page of the answer-book. · · · · · · · · · · ·ë¤ÂØæ Áæ¡¿ ·¤ÚU Üð´ ç·¤ §â ÂýàÙ-Âæ ×ð´ ×éçÎýÌ ÂëcÆU 15 ãñ´Ð ÂýàÙ-Âæ ×ð´ ÎæçãÙð ãæÍ ·¤è ¥æðÚU çΰ »° ·¤æðÇU ÙÕÚU ·¤æð ÀUææ ©æÚU-ÂéçSÌ·¤æ ·ð¤ ×é¹-ÂëcÆU ÂÚU çܹð´Ð ·ë¤ÂØæ Áæ¡¿ ·¤ÚU Üð´ ç·¤ §â ÂýàÙ-Âæ ×ð´ 31 ÂýàÙ ãñ´Ð ·ë¤ÂØæ ÂýàÙ ·¤æ ©æÚU çÜ¹Ùæ àæéM¤ ·¤ÚUÙð âð ÂãÜð, ÂýàÙ ·¤æ ·ý¤×æ´·¤ ¥ßàØ çܹð´Ð §â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15 ç×ÙÅU ·¤æ âר çÎØæ »Øæ ãñÐ ÂýàÙ-Âæ ·¤æ çßÌÚUæ Âêßæüq ×ð´ 10.15 ÕÁð ç·¤Øæ Áæ°»æÐ 10.15 ÕÁð âð 10.30 ÕÁð Ì·¤ ÀUææ ·ð¤ßÜ ÂýàÙ-Âæ ·¤æð Âɸð´»ð ¥æñÚU §â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ßð ©æÚ-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ Please check that this question paper contains 15 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 31 questions. Please write down the Serial Number of the question before attempting it. 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. â´·¤çÜÌ ÂÚUèÿææ - II SUMMATIVE ASSESSMENT - II »çæÌ MATHEMATICS çÙÏæüçÚUÌ âר Ñ 3 æÅðU Time allowed : 3 hours 30/2 ¥çÏ·¤Ì× ¥´·¤ Ñ 90 Maximum Marks : 90 1 P.T.O. âæ×æØ çÙÎðüàæ Ñ (i) âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð (ii) §â ÂýàÙ-Âæ ×ð´ (iii) ¹ÇU ¥ ×ð´ °·¤-°·¤ ¥´·¤ ßæÜð 4 ÂýàÙ ãñ´Ð ¹ÇU Õ ×ð´ 6 ÂýàÙ ãñ´ çÁâ×ð´ âð ÂýØð·¤ 2 ¥´·¤ ·¤æ ãñÐ ¹ÇU â ×ð´ 10 ÂýàÙ ÌèÙ-ÌèÙ ¥´·¤æð´ ·ð¤ ãñ´Ð ¹ÇU Î ×ð´ 11 ÂýàÙ ãñ´ çÁÙ×ð´ âð ÂýØð·¤ 4 ¥´·¤ 31 ÂýàÙ ãñ´ Áæð ¿æÚU ¹ÇUæð´ - ¥, Õ, â ¥æñÚU Î ×ð´ çßÖæçÁÌ ãñ´Ð ·¤æ ãñÐ (iv) ·ñ¤Ü·é¤ÜðÅUÚU ·¤æ ÂýØæð» ßçÁüÌ ãñÐ General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 31 questions divided into four sections A, B, C and D. (iii) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each. (iv) Use of calculators is not permitted. 30/2 2 ¹ÇU - ¥ SECTION - A ÂýàÙ â´Øæ 1 âð 4 Ì·¤ ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ Question numbers 1 to 4 carry 1 mark each. 1. °·¤ ÎèßæÚU ·ð¤ âæÍ Ü»è âèɸè ÿæñçÌÁ ·ð¤ âæÍ 608 ·¤æ ·¤æðæ ÕÙæÌè ãñÐ ØçÎ âèÉ¸è ·¤æ ÂæÎ ÎèßæÚU âð 2.5 ×è. ·¤è ÎêÚUè ÂÚU ãñ, Ìæð âèÉ¸è ·¤è ÜÕæ§ü ææÌ ·¤èçÁ°Ð A ladder, leaning against a wall, makes an angle of 608 with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder. 2. k ·ð¤ ç·¤â ×æÙ ·ð¤ çܰ k19, 2k21 ÌÍæ 2k17 °·¤ â׿´ÌÚU æðÉ¸è ·ð¤ ·ý¤×æ»Ì ÂÎ ãñ´? For what value of k will k19, 2k21 and 2k17 are the consecutive terms of an A.P. ? 3. ¥æ·ë¤çÌ 1 ×ð´ O ·ð¤Îý ßæÜð ßëæ ·ð¤ çÕ´Îé C ÂÚU PQ °·¤ SÂàæü ÚðU¹æ ãñÐ ØçÎ ãñ ÌÍæ ÐCAB5308 ãñ, Ìæð ÐPCA ææÌ ·¤èçÁ°Ð ¥æ·ë¤çÌ AB °·¤ ÃØæâ 1 In fig.1, PQ is a tangent at a point C to a circle with centre O. If AB is a diameter and ÐCAB5308, find ÐPCA. Figure 1 30/2 3 P.T.O. 4. Âææð´ ·¤è ¥ÀUè Âý·¤æÚU Èð´¤ÅUè »§ü Ìæàæ ·¤è »aè ×ð´ âð ØæÎëÀUØæ °·¤ Âææ çÙ·¤æÜæ »ØæÐ ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ° ç·¤ çÙ·¤æÜæ »Øæ Âææ Ù Ìæð ÜæÜ Ú´U» ·¤æ ãñ ¥æñÚU Ù ãè °·¤ Õð$»× ãñÐ 52 A card is drawn at random from a well shuffled pack of 52 playing cards. Find the probability of getting neither a red card nor a queen. ¹ÇU - Õ SECTION - B ÂýàÙ â´Øæ 5 âð 10 Ì·¤ ÂýØð·¤ ÂýàÙ ·ð¤ 2 ¥´·¤ ãñÐ Question numbers 5 to 10 carry 2 marks each. 5. ¥æ·ë¤çÌ 2 ×ð´ °·¤ ¿ÌéÖüéÁ ABCD, O ·ð´¤Îý ßæÜð ßëæ ·ð¤ ÂçÚU»Ì §â Âý·¤æÚU ÕÙæ§ü »§ü ãñ ç·¤ ÖéÁæ°¡ AB, BC, CD ÌÍæ DA ßëæ ·¤æð ·ý¤×àæÑ çÕ´Î饿ð´ P, Q, R ÌÍæ S ÂÚU SÂàæü ·¤ÚUÌè ãñ´Ð çâh ·¤èçÁ° ç·¤ AB1CD5BC1DA Ð ¥æ·ë¤çÌ 2 In Fig.2, a quadrilateral ABCD is drawn to circumscribe a circle, with centre O, in such a way that the sides AB, BC, CD and DA touch the circle at the points P, Q, R and S respectively. Prove that. AB1CD5BC1DA. Figure 2 30/2 4 6. °·¤ â׿´ÌÚU æðÉ¸è ·¤æ ¿æñÍæ ÂÎ àæêØ ãñÐ çâh ·¤èçÁ° ç·¤ §â·¤æ ÂÎ ·¤æ ÌèÙ »éÙæ ãñÐ 25 ßæ´ ÂÎ, ©â·ð¤ 11 ßð´ The 4th term of an A.P. is zero. Prove that the 25th term of the A.P. is three times its 11th term. 7. ¥æ·ë¤çÌ 3 ×ð´ °·¤ Õæs çÕ´Îé P âð, O ·ð¤Îý ÌÍæ r çæØæ ßæÜð ßëæ ÂÚU Îæð SÂàæü ÚðU¹æ°¡ PT ÌÍæ PS ¹è´¿è »§ü ãñ´Ð ØçÎ OP52r ãñ, Ìæð Îàææü§° ç·¤ ÐOTS5ÐOST5308Ð ¥æ·ë¤çÌ 3 In Fig. 3, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r. If OP52r, show that ÐOTS5ÐOST5308. Figure 3 8. çâh ·¤èçÁ° ç·¤ çÕ´Îé (3, 0), (6, 4) ÌÍæ (21, 3) °·¤ â×çmÕæãé â×·¤æðæ çæÖéÁ ·ð¤ àæèáü ãñ´Ð Prove that the points (3, 0), (6, 4) and (21, 3) are the vertices of a right angled isosceles triangle. 9. ×æÙæ P ÌÍæ Q, A(2, 22) ÌÍæ B(27, 4) ·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ¹´ÇU ·¤æð §â Âý·¤æÚU â×çæÖæçÁÌ ·¤ÚUÌð ãñ´ ç·¤ P, çÕ´Îé A ·ð¤ Âæâ ãñÐ P ÌÍæ Q ·ð¤ çÙÎðüàææ´·¤ ææÌ ·¤èçÁ°Ð Let P and Q be the points of trisection of the line segment joining the points A(2, 22) and B(27, 4) such that P is nearer to A. Find the coordinates of P and Q. 30/2 5 P.T.O. 10. x ·ð¤ çܰ ãÜ ·¤èçÁ° : Solve for x : 2 x19 1 x 513 2 x19 1 x 513 ¹ÇU - â SECTION - C ÂýàÙ â´Øæ 11 âð 20 Ì·¤ ÂýØð·¤ ÂýàÙ 3 ¥´·¤ ·¤æ ãñÐ Question numbers 11 to 20 carry 3 marks each. 11. ØçÎ çÕÎé P(x, y) çÕ´Îé¥æð´ ·¤èçÁ° ç·¤ bx5ay. A(a1b, b2a) ÌÍæ B(a2b, a1b) âð â×ÎêÚUSÍ ãñ, Ìæð çâh If the point P(x, y) is equidistant from the points A(a1b, b2a) and B(a2b, a1b). Prove that bx5ay. 12. °·¤ àæ´Ãææ·¤æÚU ÕÌüÙ, çÁâ·ð¤ ¥æÏæÚU ·¤è çæØæ 5 âð×è ÌÍæ ª¡¤¿æ§ü 24 âð×è ãñ, ÂæÙè âð ÂêÚUæ ÖÚUæ ãñÐ ©â ÂæÙè ·¤æð °·¤ ÕðÜÙæ·¤æÚU ÕÌüÙ, çÁâ·¤è çæØæ 10 âð×è ãñ, ×ð´ ÇUæÜ çÎØæ ÁæÌæ ãñÐ ÕðÜÙæ·¤æÚU ÕÌüÙ ×ð´ ç·¤ÌÙè ª¡¤¿æ§ü Ì·¤ ÂæÙè ÖÚU ÁæØð»æ? ( p5 22 7 ÜèçÁ° ) A conical vessel, with base radius 5 cm and height 24 cm, is full of water. This water is emptied into a cylindrical vessel of base radius 10 cm. Find the height to which the water will rise in the cylindrical vessel. (Use p5 30/2 6 22 ) 7 13. ¥æ·ë¤çÌ 4 ×ð´ O ·ð¤Îý ßæÜð ßëæ ·¤æ ÃØæâ AB513 âð×è ãñ ÌÍæ AC512 âð×è ãñÐ ç×ÜæØæ »Øæ ãñÐ ÀUæØæ´ç·¤Ì ÿæðæ ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð ( p53.14 ÜèçÁ° ) ¥æ·ë¤çÌ BC ·¤æð 4 In fig.4, O is the centre of a circle such that diameter AB513 cm and AC512 cm. BC is joined. Find the area of the shaded region. (Take p53.14) Figure 4 14. 12 âð×è ÃØæâ ߿ܿ °·¤ »æðÜæ, °·¤ Ü´Õ ßëæèØ ÕðÜÙæ·¤æÚU ÕÌüÙ ×ð´ ÇUæÜ çÎØæ ÁæÌæ ãñ, çÁâ×ð´ ·é¤ÀU ÂæÙè ÖÚUæ ãñÐ ØçÎ »æðÜæ ÂêæüÌØæ ÂæÙè ×ð´ ÇêÕ ÁæÌæ ãñ, Ìæð ÕðÜÙæ·¤æÚU ÕÌüÙ ×ð´ ÂæÙè ·¤æ SÌÚU 3 5 9 âð×è ª¡¤¿æ ©ÆU ÁæÌæ ãñÐ ÕðÜÙæ·¤æÚU ÕÌüÙ ·¤æ ÃØæâ ææÌ ·¤èçÁ°Ð A sphere of diameter 12 cm, is dropped in a right circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in water, the water level in the cylindrical vessel rises by 3 cylindrical vessel. 30/2 7 5 cm. Find the diameter of the 9 P.T.O. 15. ¥æ·ë¤çÌ 5 ×ð´ °·¤ Åñ´UÅU ÕðÜÙ ·ð¤ ª¤ÂÚU Ü»ð ©âè ÃØæâ ßæÜð àæ´·é¤ ·ð¤ ¥æ·¤æÚU ·¤æ ãñÐ ÕðÜÙæ·¤æÚU Öæ» ·¤è ª¡¤¿æ§ü ÌÍæ ÃØæâ ·ý¤×àæÑ 2.1 ×è. ÌÍæ 3 ×è. ãñ´ ÌÍæ àæ´Ãææ·¤æÚU Öæ» ·¤è çÌÚUÀUè ª¡¤¿æ§ü 2.8 ×è. ãñÐ Åñ´UÅU ·¤æð ÕÙæÙð ×ð´ Ü»ð ·ñ¤Ùßæâ ·¤æ ×êËØ ææÌ ·¤èçÁ°, ØçÎ ·ñ¤Ùßæâ ·¤æ Öæß ` 500 ÂýçÌ ß»ü ×è ãñÐ (p5 22 7 ÜèçÁ° ) ¥æ·ë¤çÌ 5 In fig. 5, a tent is in the shape of a cylinder surmounted by a conical top of same diameter. If the height and diameter of cylindrical part are 2.1 m and 3 m respectively and the slant height of conical part is 2.8 m, find the cost of canvas needed to make the tent if the canvas is available at the rate of ` 500/sq.metre. (Use p5 22 ) 7 Figure 5 30/2 8 16. ¥æ·ë¤çÌ 6 ×ð´, Îæð â·ð¤ÎýèØ ßëææð´, çÁâ·¤è çæØæ°¡ ÀUæØæ´ç·¤Ì ÿæðæ ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ° ÁÕç·¤ ¥æ·ë¤çÌ 7 âð×è ÌÍæ ÐAOC5408 14 âð×è ãñ´, ·ð¤ Õè¿ çæÚðU ãñÐ (p5 22 7 ÜèçÁ°) 6 In fig. 6, find the area of the shaded region, enclosed between two concentric circles of radii 7 cm and 14 cm where ÐAOC5408. (Use p5 22 ) 7 Figure 6 17. °·¤ ÃØçæ °·¤ ÁÜØæÙ ·ð¤ ÇñU·¤, Áæð ÂæÙè ·ð¤ SÌÚU âð 10 ×è. ª¡¤¿æ ãñ, âð °·¤ ÂãæÇ¸è ·ð¤ çàæ¹ÚU ·¤æ ©óæØÙ ·¤æðæ 608 ÌÍæ ÂãæÇ¸è ·ð¤ ÌÜ ·¤æ ¥ßÙ×Ù ·¤æðæ 308 ÂæÌæ ãñÐ ÂãæÇ¸è âð ÁÜØæÙ ·¤è ÎêÚUè ÌÍæ ÂãæÇ¸è ·¤è ª¡¤¿æ§ü ææÌ ·¤èçÁ°Ð A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 608 and the angle of depression of the base of hill as 308. Find the distance of the hill from the ship and the height of the hill. 30/2 9 P.T.O. 18. ÌèÙ ¥´·¤æð´ ·¤è °·¤ ÏÙæ×·¤ â´Øæ ·ð¤ ¥´·¤ â׿´ÌÚU æðɸè ×ð´ ãñ ÌÍæ ©Ù·¤æ Øæð» 15 ãñÐ ¥´·¤æð´ ·¤æ SÍæÙ ÂÜÅUÙð´ ÂÚU ÕÙÙð ßæÜè â´Øæ ×êÜ â´Øæ âð 594 ·¤× ãñÐ â´Øæ ææÌ ·¤èçÁ°Ð The digits of a positive number of three digits are in A.P. and their sum is 15. The number obtained by reversing the digits is 594 less than the original number. Find the number. 19. ØçÎ çmææÌè â×è·¤ÚUæ ç·¤ 2a5b1c ãñÐ (a2b)x21(b2c)x1(c2a)50 ·ð¤ ×êÜ â×æÙ ãñ´, Ìæð çâh ·¤èçÁ° If the roots of the quadratic equation (a2b)x21(b2c)x1(c2a)50 are equal, prove that 2a5b1c. 20. 52 Âææð´ ·¤è Ìæàæ ·¤è »aè ×ð´ âð ÜæÜ Ú´U» ·ð¤ »éÜæ×, Õð»× ÌÍæ ÕæÎàææã çÙ·¤æÜ çܰ »°Ð àæðá »aè ×ð´ âð ØæÎëÀUØæ °·¤ Âææ çÙ·¤æÜæ »ØæÐ ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ° ç·¤ çÙ·¤æÜæ »Øæ Âææ (i) °·¤ ·¤æÜæ ÕæÎàææã ãñ (ii) °·¤ ÜæÜ Ú´U» ·¤æ Âææ ãñ (iii) °·¤ ·¤æÜæ Âææ ãñ From a pack of 52 playing cards, Jacks, Queens and Kings of red colour are removed. From the remaining, a card is drawn at random. Find the probability that drawn card is : (i) a black King (ii) a card of red colour (iii) a card of black colour ¹ÇU - Î SECTION - D ÂýàÙ â´Øæ 21 âð 31 Ì·¤ ÂýØð·¤ ÂýàÙ 4 ¥´·¤ ·¤æ ãñÐ Question numbers 21 to 31 carry 4 marks each. 21. ç·¤âè ÚUæØ ×ð´ ÖæÚUè տɏ ·ð¤ ·¤æÚUæ ãÁæÚUæð´ Üæð» ÕðæÚU ãæð »°Ð 50 çßlæÜØæð´ Ùð ç×Ü·¤ÚU ÚUæØ âÚU·¤æÚU ·¤æð 1500 Åñ´ÅU Ü»æÙð ·ð¤ çܰ SÍæÙ ÌÍæ ·ñ¤Ùßâ ÎðÙð ·¤æ ÂýSÌæß ç·¤Øæ çÁâ×ð´ ÂýØð·¤ çßlæÜØ ÕÚUæÕÚU ·¤æ ¥´àæÎæÙ Îð»æÐ ÂýØð·¤ Åñ´ÅU ·¤æ çÙ¿Üæ Öæ» ÕðÜÙæ·¤æÚU ãñ, çÁâ·ð¤ ¥æÏæÚU ·¤è çæØæ 2.8 ×è. ÌÍæ ª¡¤¿æ§ü 3.5 ×è. ãñÐ ÂýØð·¤ Åñ´UÅU ·¤æ ª¤ÂÚUè Öæ» àæ´·é¤ ·ð¤ ¥æ·¤æÚU ·¤æ ãñ çÁâ·ð¤ ¥æÏæÚU ·¤è çæØæ 2.8 ×è. ÌÍæ ª¡¤¿æ§ü 2.1 ×è. ãñÐ ØçÎ ÅñU´ÅU ÕÙæÙð ßæÜð ·ñ¤Ùßæâ ·¤æ ×êËØ ` 120 ÂýçÌ ß»ü ×è. ãñ, Ìæð ÂýØð·¤ çßlæÜØ mæÚUæ ·é¤Ü ÃØØ ×ð´ ¥´àæÎæÙ ææÌ ·¤èçÁ°Ð §â ÂýàÙ mæÚUæ ·¤æñÙ âæ ×êËØ ÁçÙÌ ãæðÌæ ãñ? 30/2 ( p5 10 22 7 ÜèçÁ° ) Due to heavy floods in a state, thousands were rendered homeless. 50 schools collectively offered to the state government to provide place and the canvas for 1500 tents to be fixed by the government and decided to share the whole expenditure equally. The lower part of each tent is cylindrical of base radius 2.8 m and height 3.5 m, with conical upper part of same base radius but of height 2.1 m. If the canvas used to make the tents costs ` 120 per sq.m, find the amount shared by each school to set up the tents. What value is generated by the above problem ? (Use p5 22. 22 ) 7 ¥æ·ë¤çÌ 7 ×ð´ Îæð â×æÙ çæØæ ·ð¤ ßëæ, çÁٷ𤠷ð¤Îý O ÌÍæ O' ãñ´ ÂÚUSÂÚU çÕ´Îé X ÂÚU SÂàæü ·¤ÚUÌð ãñ´Ð OO' ÕɸæÙð ÂÚU O' ·ð¤Îý ßæÜð ßëæ ·¤æð çÕ´Îé A ÂÚU ·¤æÅUÌæ ãñÐ çÕ´Îé A âð O ·ð¤Îý ßæÜð ßëæ ÂÚU AC °·¤ SÂàæü ÚðU¹æ ãñ ÌÍæ O'D ^ AC ¥æ·ë¤çÌ ãñÐ DO' CO ·¤æ ×æÙ ææÌ ·¤èçÁ°Ð 7 In Fig. 7, two equal circles, with centres O and O', touch each other at X.OO' produced meets the circle with centre O' at A. AC is tangent to the circle with centre O, at the point C. O'D is perpendicular to AC. Find the value of DO' . CO figure 7 30/2 11 P.T.O. 23. â´Øæ¥æð´ 1, 2, 3 ÌÍæ 4 ×ð´ âð ·¤æð§ü â´Øæ x ØæÎëÀUØæ ¿éÙè »§ü ÌÍæ â´Øæ¥æð´ 1, 4, 9 ÌÍæ 16 ×ð´ âð ·¤æð§ü â´Øæ y ØæÎëÀUØæ ¿éÙè »§ü ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ° x ÌÍæ y ·¤æ »éæÙÈ¤Ü 16 âð ·¤× ãñÐ A number x is selected at random from the numbers 1, 2, 3 and 4. Another number y is selected at random from the numbers 1, 4, 9 and 16. Find the probability that product of x and y is less than 16. 24. ¥æ·ë¤çÌ 8 ×ð´ °·¤ çæÖéÁ ABC ·ð¤ àæèáü A(4, 6), B(1, 5) ÌÍæ C(7, 2) ãñÐ °·¤ ÚðU¹æ¹´ÇU DE ÖéÁæ¥æð´ AB ÌÍæ AC ·¤æð ·ý¤×àæÑ çÕ´Î饿ð´ D ÌÍæ E ÂÚU §â Âý·¤æÚU ·¤æÅUÌæ ¹è´¿æ »Øæ ãñ ç·¤ AD AE 1 5 5 AB AC 3 ãñÐ DADE ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ° ÌÍæ ©â·¤è DABC ·ð¤ ÿæðæÈ¤Ü âð ÌéÜÙæ ·¤èçÁ°Ð ¥æ·ë¤çÌ 8 In fig. 8, the vertices of DABC are A(4, 6), B(1, 5) and C(7, 2). A line-segment DE is drawn to intersect the sides AB and AC at D and E respectively such that AD AE 1 5 5 . Calculate the area of DADE and compare it with area of AB AC 3 DABC. Figure 8 30/2 12 25. ¥æ·ë¤çÌ 9 ×ð´, O ·ð´¤Îý ßæÜð ßëæ ·¤æ °·¤ çæØ¹´ÇU OAP ÎàææüØæ »Øæ ãñ çÁâ·¤æ ·ð¤Îý ÂÚU ¥Ì´çÚUÌ ·¤æðæ u ãñÐ AB ßëæ ·¤è çæØæ OA ÂÚU Ü´Õ ãñ Áæð OP ·ð¤ ÕɸæÙð ÂÚU çÕ´Îé B ÂÚU ·¤æÅUÌæ ãñÐ çâh ·¤èçÁ° ç·¤ ÚðU¹æ´ç·¤Ì Öæ» ·¤æ ÂçÚU×æÂ ¥æ·ë¤çÌ r tanu 1 secu 1 pu 21 180 ãñÐ 9 In Fig. 9, is shown a sector OAP of a circle with centre O, containing ∠ u. AB is perpendicular to the radius OA and meets OP produced at B. Prove that pu 21 the perimeter of shaded region is r tanu 1 secu 1 180 Figure 9 26. °·¤ âèÏè ÚðU¹æ ×ð´ çSÍÌ æÚUæð´ ÂÚU 1 âð 49 Ì·¤ ·¤è â´Øæ°¡ (·ý¤×æÙéâæÚU) ¥´ç·¤Ì ãñ´Ð Îàææü§° ç·¤ §Ù ¥´ç·¤Ì â´Øæ¥æð´ ×ð´ °·¤ °ðâè â´Øæ X ¥ßàØ ãñ ç·¤ X âð ÂãÜð ¥æÙð ßæÜð æÚUæð´ ÂÚU ·¤è ¥´ç·¤Ì â´Øæ¥æð´ ·¤æ Øæð», X ·ð¤ ÕæÎ ¥æÙðßæÜè ¥´ç·¤Ì â´Øæ¥æð´ ·ð¤ Øæð» ·ð¤ ÕÚUæÕÚU ãñÐ The houses in a row are numbered consecutively from 1 to 49. Show that there exists a value of X such that sum of numbers of houses proceeding the house numbered X is equal to sum of the numbers of houses following X. 30/2 13 P.T.O. 27. °·¤ ׿ðÅÚU ÕæðÅU, çÁâ·¤è çSÍÚU ÁÜ ×ð´ ¿æÜ 24 ç·¤×è/æ´ÅUæ ãñ, ÏæÚUæ ·ð¤ ÂýçÌ·ê¤Ü 32 ç·¤×è ÁæÙð ×ð´, ßãè ÎêÚUè ÏæÚUæ ·ð¤ ¥Ùé·ê¤Ü ÁæÙð ·¤è ¥Âðÿææ 1 æ´ÅUæ ¥çÏ·¤ âר ÜðÌè ãñÐ ÏæÚUæ ·¤è ¿æÜ ææÌ ·¤èçÁ°Ð A motor boat whose speed is 24 km/h in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream. 28. °·¤ â×çmÕæãé çæÖéÁ ABC ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ×ð´ BC55.5 âð×è, ÌÍæ çÁâ·ð¤ àæèáü Ü´Õ AL ·¤è Ü´Õæ§ü 3 âð×è ãñÐ çȤÚU °·¤ ¥Ø çæÖéÁ ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ·¤è ÖéÁæ°¡ DABC ·¤è â´»Ì ÖéÁæ¥æð´ ·¤æ 3 4 Öæ» ãæð´Ð Draw an isosceles DABC in which BC55.5 cm and altitude AL53 cm. Then construct another triangle whose sides are 3 of the corresponding sides of 4 DABC. 29. çâh ·¤èçÁ° ç·¤ ßëæ ·ð¤ ç·¤âè çÕ´Îé ÂÚU ¹è´¿è »§ü SÂàæü ÚðU¹æ SÂàæü çÕ´Îé âð ãæð·¤ÚU ÁæÙð ßæÜè çæØæ ÂÚU Ü´Õ ãæðÌè ãñÐ Prove that tangent drawn at any point of a circle is perpendicular to the radius through the point of contact. 30. °·¤ Âý·¤æàæ SÌ´Ö ·ð¤ çàæ¹ÚU âð, Áæð â×éÎý ·ð¤ ÁÜ SÌÚU âð 100 ×è. ª¡¤¿æ ãñ, °·¤ ÁÜØæÙ, Áæð âèÏæ Âý·¤æàæ SÌ´Ö ·¤è ¥æðÚU ¥æ ÚUãæ ãñ, ·¤æ ¥ßÙ×Ù ·¤æðæ 308 âð ÕÎÜ·¤ÚU 608 ãæð ÁæÌæ ãñÐ Âýðÿææ ·ð¤ ¥´ÌÚUæÜ ×ð´ ÁÜØæÙ mæÚUæ ÌØ ·¤è »§ü ÎêÚUè ææÌ ·¤èçÁ°Ð ( 3 51.73 ÜèçÁ° ) As observed from the top of a light house, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, changes from 308 to 608. Find the distance travelled by the ship during the period of observation. ( Use 30/2 3 51.73 ) 14 31. °·¤ °ðâð ¥æØÌæ·¤æÚU Âæ·ü¤ ·¤æð ÕÙæÙæ ãñ çÁâ·¤è ¿æñǸæ§ü §â·¤è Ü´Õæ§ü âð 3 ×è. ·¤× ãñÐ §â·¤æ ÿæðæÈ¤Ü ÂãÜð âð çÙç×üÌ â×çmÕæãé çæÖéÁæ·¤æÚU Âæ·ü¤ çÁâ·¤æ ¥æÏæÚU ¥æØÌæ·¤æÚU Âæ·ü¤ ·¤è ¿æñǸæ§ü ·ð¤ ÕÚUæÕÚU ãñ ÌÍæ ª¡¤¿æ§ü 12 ×è. ãñ, âð 4 ß»ü ×èÅUÚU ¥çÏ·¤ ãñÐ ¥æØÌæ·¤æÚU Âæ·ü¤ ·¤è Ü´Õæ§ü ¥æñÚU ¿æñǸæ§ü ææÌ ·¤èçÁ°Ð A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m. Find the length and breadth of the rectangular park. 30/2 15 P.T.O.
Documenti analoghi
10th 1040123_C1 Mathematics QP.p65
çÂÌæ ·¤è ©×ý ¥ÂÙð ÎæðÙæð´ Õææð´ ·¤è ©×ý ·ð¤ Øæð» ·¤è ÌèÙ »éÙè ãñÐ Âæ¡¿ âæÜ ÕæÎ çÂÌæ ·¤è ©×ý ¥ÂÙð Õææð´ ·¤è
©×ý ·¤è Øæð» âð Îæð »éÙè ãæð ÁæØð»èÐ çÂÌæ ·¤è ©×ý ææÌ ·¤ÚUæðÐ
Øæ
A ÌÍæ B âǸ·¤ ãæ§üßð ×...
NET 2015 Question Paper II Physical Education
§â ÂëDU ·ð¤ ª¤ÂÚU çÙØÌ SÍæÙ ÂÚU ¥ÂÙæ ÚUôÜU ÙÕÚU çÜç¹°Ð
§â ÂýàÙ-Âæ ×𢠿æâ Õãéçß·¤ËÂèØ ÂýàÙ ãñ´Ð
ÂÚUèÿææ ÂýæÚUÖ ãôÙð ÂÚU, ÂýàÙ-ÂéçSÌ·¤æ ¥æÂ·¤ô Îð Îè ÁæØð»èÐ ÂãÜðU ÂUæ¡¿ ç×ÙÅU
¥æÂ·¤ô ÂýàÙ-ÂéçSÌ·¤...
1040119 C1
§â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15 ç×ÙÅU ·¤æ âר çÎØæ »Øæ ãñÐ §â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ÀUææ ·ð¤ßÜ ÂýàÙ-Âæ ·¤æð Âɸð´»ð
¥æñÚU ßð ©æÚU-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ
learncbse.in learncbse.in
Question numbers 23 to 25 are five mark questions, to be answered in about 70 words.
NET Physical Education (Paper II)
ÂãÜðU ÂëDU ·ð¤ ª¤ÂÚU çÙØÌ SÍæÙ ÂÚU ¥ÂÙæ ÚUôÜU Ù•ÕÚU çÜç¹°Ð
§â ÂýàÙ-˜æ ×𢠿æâ Õãéçß·¤ËÂèØ ÂýàÙ ãñ¢Ð
3. ÂÚUèÿææ ÂýæÚ•UÖ ãôÙð ÂÚU, ÂýàÙ-ÂéçSÌ·¤æ ¥æÂ·¤ô Îð Îè ÁæØð»èÐ ÂãÜðU ÂUæ¡¿ ç×ÙÅU
¥æÂ·¤ô ÂýàÙ-Â...