10th 1040123_C1 Mathematics QP.p65
Transcript
10th 1040123_C1 Mathematics QP.p65
1040123 - C1 Class - X MATHEMATICS Time : 3 to 3½ hours ¥çÏ·¤Ì× âר : 3 âð 3½ æÅUð Maximum Marks : 80 ¥çÏ·¤Ì× ¥´·¤ : 80 Total No. of Pages : 13 ·é¤Ü ÂëcÆUæð´ ·¤è â´Øæ : 13 General Instructions : 1. All questions are compulsory. 2. The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 questions of 1 mark each, Section - B comprises of 8 questions of 2 marks each, Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each. 3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four. 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions. 5. Use of calculator is not permitted. 6. An additional 15 minutes time has been allotted to read this question paper only. âæ×æØ çÙÎðüàæ Ñ 1. âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð 2. §â ÂýàÙÂæ ×ð´ 34 ÂýàÙ ãñ´, Áæð ¿æÚU ¹ÇUæð´ ×ð´ ¥, Õ, â ß Î ×ð´ çßÖæçÁÌ ãñÐ ¹ÇU - ¥ ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ ¹ÇU - Õ ×ð´ 8 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·ð¤ ãñ´Ð ¹ÇU - â ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 3 ¥´·¤æð´ ·¤æ ãñÐ ¹ÇU - Î ×ð´ 6 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 4 ¥´·¤æð´ ·¤æ ãñÐ 3. ÂýàÙ â´Øæ 1 âð 10 Õãéçß·¤ËÂèØ ÂýàÙ ãñ´Ð çΰ »° ¿æÚU çß·¤ËÂæð´ ×ð´ âð °·¤ âãè çß·¤Ë ¿éÙð´Ð 4. §â×ð´ ·¤æð§ü Öè âßæðüÂçÚU çß·¤Ë Ùãè´ ãñ, Üðç·¤Ù ¥æ´ÌçÚU·¤ çß·¤Ë 1 ÂýàÙ 2 ¥´·¤æð´ ×ð´, 3 ÂýàÙ 3 ¥´·¤æð´ ×ð´ ¥æñÚU 2 ÂýàÙ 4 ¥´·¤æð´ ×ð´ çΰ »° ãñ´Ð ¥æÂ çΰ »° çß·¤ËÂæð´ ×ð´ âð °·¤ çß·¤Ë ·¤æ ¿ØÙ ·¤Úð´UÐ 5. ·ñ¤Ü·é¤ÜðÅUÚU ·¤æ ÂýØæð» ßçÁüÌ ãñÐ 6. §â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15 ç×ÙÅU ·¤æ âר çÎØæ »Øæ ãñÐ §â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ÀUææ ·ð¤ßÜ ÂýàÙ-Âæ ·¤æð Âɸð´»ð ¥æñÚU ßð ©æÚU-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ 1 P.T.O. SECTION A Question numbers 1 to 10 are of 1 mark each. 1. 2. Which of the following rational numbers have a terminating decimal expansion ? (A) 125 441 (B) 77 210 (C) 15 1600 (D) 2 1208 (B) The maximum value of (A) 4. 0 908 (C) 458 (D) 608 (C) 1 (D) 3 2 1 is : cosecM (B) 21 Which of the following pairs of equations represent inconsistent system ? (A) 3x22y58 (B) 2x13y51 5. 2 52 7 2 In DABC, if AB5 6 3 cm, AC512 cm and BC56 cm, then angle B is equal to : (A) 3. 129 If tanA5 (A) 4 3 1040123 - C1 3x2y528 (C) 3x2y524 lx2y5m (D) x1my5l 5x2y510 10x22y520 3 and A1B5908 then the value of cot B is equal to : 4 (B) 1 2 (C) 2 3 4 (D) 1 6. The lower limit of the modal class of the following data is : C. I. Frequency (A) 7. 20 - 25 10 15 25 - 30 14 30 - 35 9 (C) 10 (D) 30 30 (B) 150 (C) 100 (D) 50 1 (B) 1 4 (D) 3 (C) 1 2 If a and b are the zeroes of the polynomial 4x213x17, then (A) 10. (B) 15 - 20 6 If x . tan 458 . cot 608 5 sin 308 . cosec 608, then the value of x is : (A) 9. 10 - 15 15 The value of x in the factor tree is : (A) 8. 25 5 - 10 5 7 3 (B) 7 3 (C) 3 7 1 1 is equal to : 9 : (D) 3 7 A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time, a tower casts a shadow 75 m long on the ground. The height of the tower is : (A) 150 m 1040123 - C1 (B) 100 m (C) 3 25 m (D) 200 m P.T.O. SECTION B Question numbers 11 to 18 carry 2 marks each. 11. Explain why 11313315317117 is a Composite Number. 12. Check whether x213x11 is a factor of 3x415x327x212x12 13. Solve for x and y 4 5 y 7 x 3 4 y 5 x 14. The wickets taken by a bowler in 10 cricket matches are as follows : 2 6 4 5 0 2 1 3 2 3 Find the mode of the data. 15. If A, B and C are interior angles of a triangle ABC, then show that · § B C A ¸ cos sin ¨ ¨ 2 ¸ 2 © ¹ 16. In DABC, right angled at B, AB55 cm and A C B 5308. Find BC and AC. OR If sinu 1 sin2u 5 1, then find the value of cos2u 1 cos4u. 17. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal. 1040123 - C1 4 18. Find mode of the following data : C. I. Frequency 0 - 20 6 20 - 40 8 40 - 60 12 60 - 80 10 80 - 100 6 SECTION C Question numbers 19 to 28 carry 3 marks each. 19. Use Euclid division lemma to show that cube of any positive integer is either of the form 9m, 9m11, or 9m18. 20. If the zeroes of the polynomial x323x21x11 are a2b, a and a1b, find a and b. 21. P and Q are points on sides AB and AC respectively of DABC. If AP53 cm, PB56 cm, AQ55 cm and QC510 cm, show that BC53PQ. 22. In DABC, AD A BC such that AD25BD.CD. Prove that DABC is right angled at A. OR Two right triangles ABC and DBC are drawn on the same hypotenuse BC and on the same side of BC. If AC and BD intersect at P, prove that : AP3PC5BP3DP 23. If sinu1cosu5p and secu1cosecu5q, show that q(p221)52p OR If sinu1cosu5 2 sin(902u), then find the value of tanu. 24. Evaluate : sin39 2tan11 tan31 tan45 tan59 tan79 3(sin 2 21 sin 2 69 ) cos51 25. Prove that 315 2 is irrational. 1040123 - C1 5 P.T.O. 26. Find the median of the following data : C.I. Frequency 27. 1-4 6 4-7 30 7 - 10 40 10 - 13 16 13 - 16 4 16 - 19 4 Fathers age is 3 times the sum of ages of his two children. After 5 years his age will be twice the sum of ages of two children. Find the age of father. OR Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other they meet in 1 hour. What are the speeds of the two cars ? 28. Draw the more than ogive for the following frequency distribution : Class Interval 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175 175 - 180 Frequency 6 10 22 34 16 12 SECTION D Question numbers 29 to 34 carry 4 marks each. 29. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides. OR Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides. p 21 sinM . 30. If secu1tanu5p, show that 31. Solve graphically ; x2y51, 2x1y58. Shade the region bounded by these lines and y-axis. Also find its area. 1040123 - C1 p 21 6 32. The mean of the following data is 50. Find the missing frequencies f1 and f2. C.I. Frequency 0 - 20 20 - 40 40 - 60 17 f1 32 60 - 80 80 - 100 f2 19 Total 120 33. If two zeroes of the polynomial p (x)5x426x3226x21138x235 are 2 3 , find the other zeroes. 34. If tanu 1 sinu 5 m and tanu 2 sinu 5 n show that m22n25 4 mn. OR If secu5x1 1 , then prove that tanu1secu52x or 1 . 4x 2x -o0o- 1040123 - C1 7 P.T.O. ¹ÇU-¥ ÂýàÙ â´Øæ 1 âð 10 Ì·¤ ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ 1. 2. ·¤æñÙ âè ÂçÚU×ðØ â´Øæ âæ´Ì Îàæ×Üß ×ð´ ãñ? (A) 125 441 (B) 77 210 (C) 15 1600 (D) 2 DABC ×ð´, (A) 3. 4. 1208 1 cosecM (A) ØçÎ AB5 6 3 2 527 2 âð.×è., AC512 âð.×è. ÌÍæ BC56 âð.×è., ÌÕ (B) B ·¤æ ×æÙ ãæð»æ Ñ 908 (C) 458 (D) 608 21 (C) 1 (D) 3 2 lx2y5m (D) ·¤æ ×ãæ× ×æÙ ãæð»æ Ñ 0 (B) çÙÙçÜç¹Ì ÚñUç¹·¤ â×è·¤ÚUææð´ Øé× ×ð´ ·¤æñÙ âæ ¥â´»Ì ãñ? (A) 3x22y58 (B) 2x13y51 5. 129 ØçÎ tanA5 (A) 4 3 1040123 - C1 3 4 3x2y528 (C) 3x2y524 x1my5l 5x2y510 10x22y520 ÌÍæ A1B5908 ÌÕ cot B ·¤æ ×æÙ ãæð»æ Ñ (B) 1 2 (C) 8 3 4 (D) 1 6. çÙÙ ¥æ¡·¤Ç¸æð´ ×ð´ ×æçØ·¤æ ·¤ÿæ ·¤è çÙÙ âè׿ ãæð»è Ñ Æ¢ãr³Á<Íà ¼ÍÁ<¼ÍÁ<³Í (A) 7. 20 - 25 25 - 30 30 - 35 5 15 6 10 14 9 (B) 15 30 (B) 150 1 (B) 1 4 (C) 10 (D) 30 (C) 100 (D) 50 (D) 3 (C) ØçÎ a , b ÕãéÂÎ 4x213x17 ·ð¤ àæêØæ´·¤ ãñ Ìæð (A) 10. 15 - 20 ØçÎ x . tan 458 . cot 608 5 sin 308 . cosec 608 ÌÕ x ·¤æ ×æÙ ãæð»æ Ñ (A) 9. 10 - 15 çÙÙ »éæÙ¹´ÇU ßëÿæ ×ð´ x ·¤æ ×æÙ ãæð»æ Ñ (A) 8. 25 5 - 10 7 3 (B) 1 1 9 : 7 3 1 2 ÕÚUæÕÚU ãæð»æ Ñ (C) 3 7 (D) 3 7 °·¤ ©ßæüÏÚU 30 ×è. ÜÕð δÇU ·¤è ÀUæØæ ÏÚUæÌÜ ×ð´ 15 ×èÅUÚU ÂǸÌè ãñÐ ©âè âר °·¤ ×èÙæÚU ·¤è ÀUæØæ 75 ×èÅUÚU ÜÕè, ÏÚUæÌÜ ×ð´ ÂǸUÌè ãñÐ ×èÙæÚU ·¤è ª¤¡¿æ§ü ãæð»è Ñ (A) 150 1040123 - C1 ×è. (B) 100 ×è. (C) 9 25 ×è. (D) 200 ×è. P.T.O. ¹ÇU-Õ ÂýàÙ â´Øæ 11 âð 18 Ì·¤ ÂýØð·¤ ÂýàÙ 2 ¥´·¤ ·¤æ ãñÐ 11. SÂcÅU ·¤èçÁ° ç·¤ 11313315317117 °·¤ ÖæØ â´Øæ ãñÐ 12. Áæ¡¿ ·¤èçÁ° ç·¤ x213x11, 3x415x327x212x12 ·¤æ »éæÙ¹´ÇU ãñÐ 13. x ÌÍæ y ·ð¤ ×æÙ ·ð¤ çÜØð ãÜ ·¤Úð´UÐ 4 5 y 7 x 3 4 y 5 x 14. °·¤ »ð´ÎÕæÁ mæÚUæ 10 ç·ý¤·ð¤ÅU ×ñ¿ ×ð´ çÜØð »Øð çßç·¤ÅU §â Âý·¤æÚU ãñ Ñ 2 6 4 5 0 2 1 3 2 3 ¥æ¡·¤Ç¸æð´ ·¤æ ÕãéÜ·¤ ææÌ ·¤ÚUæðÐ 15. ØçÎ A, B, C ç·¤âè çæÖéÁ ABC ·ð¤ ¥æÌçÚU·¤ ·¤æðæ ãæð´ Ìæð Îàææü§Øð Ñ A § BC · sin ¨ ¸ cos 2 © 2 ¹ 16. â×·¤æðæ DABC çÁâ·¤æ çÙ·¤æçܰРB â×·¤æðæ ãñ, ØçÎ AB55 âð.×è. ÌÍæ ACB5308 Ìæð ÖéÁæ BC ÌÍæ AC Øæ ØçÎ sinu 1 sin2u 5 1, ÌÕ cos2u 1 cos4u ·¤æ ×æÙ ææÌ ·¤ÚUæðÐ 17. çâh ·¤èçÁ° ç·¤ °·¤ ß»ü ·¤è ç·¤âè ÖéÁæ ÂÚU ÕÙæØð »° â×Õæãé çæÖéÁ ·¤æ ÿæðæÈ¤Ü ©âè ß»ü ·ð¤ °·¤ çß·¤æü ÂÚU ÕÙæØð »Øð â×Õæãé çæÖéÁ ·ð¤ ÿæðæÈ¤Ü ·¤æ ¥æÏæ ãæðÌæ ãñÐ 18. çÙÙçÜç¹Ì ¥æ¡·¤Ç¸æð´ ·¤æ ÕãéÜ·¤ ææÌ ·¤èçÁ°Ð Æ¢ãr³Á<Íà ¼ÍÁ<¼ÍÁ<³Í 1040123 - C1 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 6 8 12 10 6 10 ¹ÇU-â ÂýàÙ â´Øæ 19 âð 28 Ì·¤ ÂýØð·¤ ÂýàÙ 3 ¥´·¤ ·¤æ ãñÐ 19. ØêçÜÇU Öæ» Âý×ðçØ·¤æ mæÚUæ Îàææü§Øð ç·¤ ç·¤âè ÏÙæ×·¤ ÂêææZ·¤ ·¤æ æÙ 9m, 9m11, or 9m18 ·ð¤ M¤Â ×ð´ ãæðÌæ ãñÐ 20. ØçÎ ÕãéÂÎ x323x21x11 ·ð¤ àæêØæ´·¤ a2b, a ÌÍæ 21. ç·¤âè çæÖéÁ ABC ·ð¤ ÖéÁæ AB ÌÍæ AC ×ð´ P ¥æñÚU Q Îæð çÕÎé ãñÐ ØçÎ AP53 âð.×è., PB56 âð.×è. AQ55 âð.×è. ÌÍæ QC510 âð.×è. ãæð Ìæð Îàææü§Øð BC53PQ. 22. ç·¤âè DABC ×ð´, â×·¤æðæ ãñÐ AD A BC a1b ãæð´ Ìæð a ÌÍæ b ·ð¤ ×æÙ ææÌ ·¤ÚUæðÐ §â Âý·¤æÚU ãñ ç·¤ AD25BD.CD Ìæð çâh ·¤èçÁ° ç·¤ DABC ·¤æ ·¤æðæ Øæ Îæð â×·¤æðæ DABC ÌÍæ DDBC ·¤æü BC ·ð¤ °·¤ ãè ÌÚUȤ ¹è´¿ð »ØðÐ ØçÎ P çÕÎé ÂÚU ÂýçÌÀðUÎ ·¤Úð´U Ìæð çâh ·¤ÚUæð Ñ AC ÌÍæ BD A °·¤ ÎêâÚðU ·¤æð AP3PC5BP3DP 23. ØçÎ sinu1cosu5p ÌÍæ secu1cosecu5q, Îàææü§Øð q(p221)52p. Øæ ØçÎ sinu1cosu5 2 sin(902u) ÌÕ tanu ·¤æ ×æÙ ææÌ ·¤ÚUæðÐ 24. sin39 2tan11 tan31 tan45 tan59 tan79 3(sin 2 21 sin 2 69 ) cos51 25. çâh ·¤èçÁ° ç·¤ 315 26. çÙÙ ¥æ¡·¤Ç¸æð´ ·¤è ×æçØ·¤æ ææÌ ·¤ÚUæðРƢãr³Á<Íà ¼ÍÁ<¼ÍÁ<³Í 1040123 - C1 2 ·¤æ ×æÙ ææÌ ·¤Úð´UÐ °·¤ ¥ÂçÚU×ðØ â´Øæ ãñÐ 1-4 4-7 7 - 10 10 - 13 13 - 16 16 - 19 6 30 40 16 4 4 11 P.T.O. 27. çÂÌæ ·¤è ©×ý ¥ÂÙð ÎæðÙæð´ Õææð´ ·¤è ©×ý ·ð¤ Øæð» ·¤è ÌèÙ »éÙè ãñÐ Âæ¡¿ âæÜ ÕæÎ çÂÌæ ·¤è ©×ý ¥ÂÙð Õææð´ ·¤è ©×ý ·¤è Øæð» âð Îæð »éÙè ãæð ÁæØð»èÐ çÂÌæ ·¤è ©×ý ææÌ ·¤ÚUæðÐ Øæ A ÌÍæ B âǸ·¤ ãæ§üßð ×ð´ 100 ç·¤.×è. ÎêÚUè ÂÚU ãñÐ Îæð ·¤æÚð´U A ÌÍæ B âð °·¤ ãè âר ×ð´ ÌÍæ °·¤ ãè çÎàææ ×𴠥ܻ ¥Ü» »çÌ âð ¿ÜÌè ãñ Ìæð ßã ÎæðÙæð´ 5 æ´ÅðU ÂÚU ç×ÜÌè ãñÐ ØçÎ ßã °·¤ ÎêâÚðU ·¤è ÌÚUȤ ¿ÜÌè ãñ´ Ìæð 1 æ´ÅðU ÕæÎ ç×ÜÌè ãñÐ ÎæðÙæð´ ·¤æÚUæð´ ·¤è »çÌ ææÌ ·¤èçÁ°Ð 28. Ùè¿ð çܹð ÕæÚ´UÕæÚUÌæ Õ´ÅUÙ ·¤æ ÌæðÚUæ Òâð ¥çÏ·¤ Âý·¤æÚUÓ ¹è´ç¿°Ð Æ¢ãr³Á<Íà ¼ÍÁ<¼ÍÁ<³Í 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175 175 - 180 6 10 22 34 16 12 ¹ÇU - Î ÂýàÙ â´Øæ 29 âð 34 Ì·¤ ÂýØð·¤ ÂýàÙ 4 ¥´·¤ ·¤æ ãñÐ 29. çâh ·¤èçÁ° ç·¤ â×·¤æðæ çæÖéÁ ×ð´ ·¤æü ·¤æ ß»ü àæðá ¥Ø ÎæðÙæð´ ÖéÁæ¥æð´ ·ð¤ ß»æðZ ·ð¤ Øæð» ·ð¤ ÕÚUæÕÚU ãæðÌæ ãñÐ Øæ çâh ·¤èçÁ° Îæð â×M¤Â çæÖéÁæð´ ·ð¤ ÿæðæÈ¤Üæð´ ·¤æ ¥ÙéÂæÌ §Ù·¤è â´»Ì ÖéÁæ¥æð´ ·ð¤ ¥ÙéÂæÌ ·ð¤ ß»ü ·ð¤ ÕÚUæÕÚU ãæðÌæ ãñÐ 30. ØçÎ secu1tanu5p, Îàææü§Øð 31. »ýæÈ¤èØ çßçÏ mæÚUæ ãÜ ·¤ÚUæð Ñ p 21 p 21 sinM . x2y51, 2x1y58 ©â ÿæðæ ·¤æð ÀUæØæ´ç·¤Ì ·¤èçÁ° Áæð ©ÂØéüÌ ÚðU¹æØð´ ÌÍæ y-¥ÿæ ·ð¤ Õè¿ ×ð´ ãæðÐ §â ÿæðæ ·¤æ ÿæðæÈ¤Ü Öè ææÌ ·¤Úð´UÐ 32. çÙÙçÜç¹Ì ¥æ¡·¤Ç¸æð´ ·¤æ ×Ø×æÙ 50 ãñ, ¥ææÌ ÕæÚ´UÕæÚUÌæ f1 ÌÍæ f2 ææÌ ·¤ÚUæðРƢãr³Á<Íà ¼ÍÁ<¼ÍÁ<³Í 1040123 - C1 0 - 20 20 - 40 40 - 60 17 f1 32 60 - 80 80 - 100 f2 12 19 Total 120 33. ØçÎ ÕãéÂÎ p(x)5x426x3226x21138x235 ·ð¤ àæêØæ´·¤ 34. ØçÎ tanu 1 sinu 5 m ÌÍæ tanu 2 sinu 5 n ãæð 2 3 ãæð Ìæð ¥Ø àæêØæ´·¤ ææÌ ·¤ÚUæðÐ Ìæð Îàææü§Øð m22n25 4 mn. Øæ ØçÎ secu5x1 1 4x ÌÕ çâh ·¤ÚUæð tanu1secu52x Øæ 1 . 2x -o0o- 1040123 - C1 13 P.T.O.
Documenti analoghi
1040119 C1
Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select
one correct option out of the given four.
041_IX_SA2_30_A1 QP Mathematics.p65
ç׿ ãñ´Ð A ·¤è ¥æØé B ·¤è ¥æØé âð 5 ßáü ¥çÏ·¤ ãñ´Ð B ·¤è ÕãÙ C ·¤è ¥æØé B ·¤è ¥æØé ·¤æ ¥æÏæ
ãñÐ ÁÕç·¤ A ·ð¤ çÂÌæÁè D ·¤è ¥æØé B ·¤è ¥æØé ·ð¤ Îé»Ùð âð 8 ßáü ¥çÏ·¤ ãñÐ ØçÎ D ·¤è ßÌü×æÙ ¥æØé 48
ßáü ã...
JSR 030 Set 2 Mathematics.p65
°·¤ ÃØçæ °·¤ ÁÜØæÙ ·ð¤ ÇñU·¤, Áæð ÂæÙè ·ð¤ SÌÚU âð 10 ×è. ª¡¤¿æ ãñ, âð °·¤ ÂãæÇ¸è ·ð¤
çàæ¹ÚU ·¤æ ©óæØÙ ·¤æðæ 608 ÌÍæ ÂãæÇ¸è ·ð¤ ÌÜ ·¤æ ¥ßÙ×Ù ·¤æðæ 308 ÂæÌæ ãñÐ ÂãæÇ¸è âð
ÁÜØæÙ ·¤è ÎêÚUè ÌÍæ Âãæ...