Teorema di Pitagora
Transcript
Teorema di Pitagora
Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato al triangolo rettangolo, completi di risoluzione guidata. Livello intermedio e avanzato. Triangle Rectangle Problems involving Pythagoras Theorem. (Geometry) 1. In un triangolo rettangolo la somma dei cateti misura 42 cm e uno è i 3/4 dell’altro. Esegui il disegno in proporzione e determina il perimetro e l’area della figura. soluzione 2. Un muratore dispone di una pertica indeformabile di 100 cm e un metro. Sapresti descrivere come potrebbe stabilire se il muro forma con il pavimento un angolo retto. soluzione 3. La somma dei cateti di un triangolo rettangolo misura 28 cm e uno è i 4/3 dell’altro. Determina il perimetro e l’area della figura. soluzione 4. Un triangolo rettangolo ha i cateti lunghi rispettivamente cm 60 e cm 45. Calcola l’area del triangolo, la misura del perimetro, la misura dell’altezza relativa all’ipotenusa e il perimetro di un rettangolo equivalente al triangolo, sapendo che le sue dimensioni sono una i 2/3 dell’altra. soluzione 5. La somma dei cateti di un triangolo rettangolo misura cm 84 e uno è i 3/4 dell’altro. Determina il perimetro e l’area della figura. soluzione 6. La differenza dei cateti di un triangolo rettangolo misura 4 cm e uno è i 3/4 dell’altro. Determina il perimetro e l’area della figura. soluzione 7. La somma del cateto maggiore e dell’ipotenusa di un triangolo rettangolo è pari a 36 cm e l’ipotenusa è i 5/4 del cateto maggiore. Determina il perimetro e l’area della figura. soluzione 8. La lunghezza di uno dei cateti di un triangolo rettangolo è data dal medio proporzionale tra 48 e 12. Sapendo che la superficie del triangolo dato misura 840 cm2, determina il perimetro della figura. soluzione 9. Un triangolo rettangolo ha l'area di 546 cm2 e un cateto misura 84 cm. Calcola la lunghezza del perimetro del triangolo. soluzione 10. Calcola l’area e il perimetro di un triangolo rettangolo i cui cateti misurano rispettivamente 15 cm e 36 cm. Dimezzando le misure dei lati qual è il rapporto tra i perimetri e le aree delle due figure? soluzione 11. Un triangolo rettangolo ha l'area di 96 cm2 e un cateto misura 16 cm. Calcola la lunghezza del perimetro del triangolo. soluzione Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 2 12. Calcola la misura dell’ipotenusa, del perimetro e dell’area e di un triangolo ABC, rettangolo in A, la cui altezza AH relativa all’ipotenusa misura 9,6 cm e la cui mediana AM, relativa all’ipotenusa, misura 10 cm. soluzione 13. Calcola la misura dell’ipotenusa, del perimetro e dell’area e di un triangolo ABC, rettangolo in C, la cui altezza CH relativa all’ipotenusa misura 9,6 cm e la cui mediana CM, relativa all’ipotenusa, misura 10 cm. soluzione 14. Calcola la misura del perimetro e dell’area e di un triangolo ABC, rettangolo in C, la cui ipotenusa AB misura 112 cm e l’altezza CH e la mediana CM relativa a esse relative misurano rispettivamente 30 cm e 34 cm. soluzione 15. L’area di un triangolo rettangolo è di 4374 cm2 e un suo cateto misura 108 cm. Calcola il perimetro del triangolo e l’altezza relativa all’ipotenusa. soluzione 16. L’altezza AH relativa alla base di un triangolo misura 40 cm. Le proiezioni BH e CH dei due lati sulla base del triangolo misurano rispettivamente 35 cm e 75 cm. Esegui il disegno e calcola la misura del perimetro e dell’area del triangolo. soluzione 17. La somma dei due cateti di un triangolo rettangolo è di 46 cm e un cateto supera l’altro di 14 cm. Calcola l’area, la misura del perimetro e l’apotema del triangolo. soluzione 18. L’ipotenusa e un cateto di un triangolo rettangolo misurano rispettivamente 75 cm e 72 cm. Di quanto differisce l’area del triangolo dato e quella di un quadrato isoperimetrico a questo? soluzione 19. L’area di un triangolo rettangolo è di 42,135 cm2 e un suo cateto misura 7,95 cm. Calcola il perimetro del triangolo. soluzione 20. Uno dei cateti di un triangolo rettangolo è i 4/5 dell’ipotenusa che misura 40 cm. Calcola il perimetro e l’area del triangolo. soluzione 21. La differenza dei cateti di un triangolo rettangolo misura 70 cm e uno è i 5/12 dell’altro. Determina il perimetro e l’area della figura. soluzione 22. L’area di un triangolo rettangolo ABC è di 840 cm2 e il cateto maggiore AB misura 42 cm. Calcola il perimetro e l’area del triangolo ABM, dove il segmento BM è la mediana relativa al cateto minore AC. soluzione 23. In un triangolo rettangolo le misure dei due cateti sommate tra di loro misurano 5,6 m e uno è i 3/4 dell’altro. Calcola il perimetro e l’area del triangolo rettangolo. soluzione Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 3 24. Una composizione è formata da una struttura a triangolo rettangolo la cui ipotenusa misura 5 m, il cateto che si alza dal terreno, in corrispondenza dell’angolo retto, è di 4 m. A questa struttura su terreno è appoggiata un triangolo ottusangolo che ha un lato in comune con l’ipotenusa del triangolo rettangolo e che un l’altro lato come prolungamento del cateto del triangolo rettangolo appoggiato al terreno. Il triangolo ottusangolo forma con il terreno un angolo di 45°. Calcola la superficie di materiale necessario a costruire quest’ultimo triangolo e il suo perimetro. soluzione 25. In un triangolo ABC, rettangolo in A, la somma del cateto 𝐴𝐵 con l’ipotenusa 𝐵𝐶 misura 81 cm. Sapendo che 𝐵𝐶 = 𝐴𝐵 + 1 𝑐𝑚, calcola il perimetro e l’area del triangolo. soluzione raccolta dedicata a Giacomo – febbraio 2004 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 4 Soluzioni In un triangolo rettangolo la somma dei cateti è cm 42 e uno è i 3/4 dell’altro. Esegui il disegno in proporzione e determina il perimetro e l’area della figura. Dati e relazioni c1 + c2 = 42 cm 3 c2 = c1 4 Richieste 1. 2p; 2. Area 3 4 7 + = 4 4 4 7 4 𝑐1 = 42: = 42 ∙ = 6 ∙ 4 = 24 𝑐𝑚 4 7 𝑐2 = (𝑐1 + 𝑐2 ) − 𝑐1 = 42 − 24 = 18 𝑐𝑚 𝑖 = √𝑐12 + 𝑐22 = √242 + 182 = √576 + 324 = √900 = 30 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 42 + 30 = 72 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 24 ∙ 18 = = = 24 ∙ 9 = 216 𝑐𝑚2 2 2 2 Equazione 𝑥 + 𝑦 = 42 𝑦= 3 𝑥 4 3 𝑥 + 𝑥 = 42 4 4𝑥 + 3𝑥 = 4 ∙ 42 7𝑥 = 4 ∙ 42 4 ∙ 42 = 24 7 3 𝑦 = ∙ 24 = 18 4 𝑥= Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 5 Un muratore dispone di una pertica indeformabile di 100 cm e un metro. Sapresti descrivere come potrebbe stabilire se il muro forma con il pavimento un angolo retto. Dati e relazioni i = 100 cm Richiesta condizione ∟ 𝑝𝑜𝑛𝑒𝑛𝑑𝑜 𝑖 = 100 𝑐𝑚 𝑢𝑛𝑎 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑒 𝑡𝑒𝑟𝑛𝑎 è 60, 80, 100 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑎 𝑑𝑎𝑙𝑙𝑎 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑎 3, 4, 5 602 + 802 = 1002 3600 + 6400 = 10000 Disegna sul muro una tacca a 60 cm e una a 100 cm e controlla se la pertica si dispone in corrispondenza dei segni sul muro. Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 6 La somma dei cateti di un triangolo rettangolo misura 28 cm e uno è i 4/3 dell’altro. Determina il perimetro e l’area della figura. Dati e relazioni c1 + c2 = 28 cm 4 c1 = c2 3 Richieste 1. 2p; 2. Area 3 4 7 + = 4 4 4 7 4 𝑐1 = 28: = 28 ∙ = 4 ∙ 4 = 16 𝑐𝑚 4 7 𝑐2 = (𝑐1 + 𝑐2 ) − 𝑐1 = 28 − 16 = 12 𝑐𝑚 𝑖 = √𝑐12 + 𝑐22 = √162 + 122 = √256 + 144 = √400 = 20 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 28 + 20 = 48 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 16 ∙ 12 = = = 16 ∙ 6 = 96 𝑐𝑚2 2 2 2 Equazione 𝑥 + 𝑦 = 28 𝑦= 3 𝑥 4 3 𝑥 + 𝑥 = 28 4 4𝑥 + 3𝑥 = 4 ∙ 28 7𝑥 = 4 ∙ 28 4 ∙ 28 = 16 7 3 𝑦 = ∙ 16 = 12 4 𝑥= Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 7 Un triangolo rettangolo ha i cateti lunghi rispettivamente cm 60 e cm 45. Calcola: l’area del triangolo; la misura del perimetro; la misura dell’altezza relativa all’ipotenusa; il perimetro di un rettangolo equivalente al triangolo, sapendo che le sue dimensioni sono una i 2/3 dell’altra. Dati e relazioni c1 = 60 cm c2 = 45 cm Arettangolo = Atriangolo 2 hr = 𝑏𝑟 3 Richieste 1. A(triangolo); 2. 2p(triangolo) 3. altezza rel. ipotenusa; 4. 2p (rettangolo) 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 = 2 2 60 ∙ 45 = = 30 ∙ 45 = 1350 𝑐𝑚2 2 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 = 𝐴𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 = 𝐴𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 𝑖 = √𝑐12 + 𝑐22 𝑖 = √602 + 452 = √3600 + 2025 = √5625 = 75 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 60 + 45 + 75 = 180 𝑐𝑚 ℎ𝑖 = 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 1350 270 90 = = = = 18 𝑐𝑚 𝑖 75 15 5 𝐴 1350 450 𝑏𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 3 ∙ √ = 3∙√ =3∙√ = 3 ∙ √225 = 3 ∙ 15 2∙3 6 2 = 45 𝑐𝑚 ℎ𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 𝐴 ℎ𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 1350 150 = = 30 𝑐𝑚 45 5 2𝑝𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 2 ∙ (𝑏 + ℎ) = 2 ∙ (45 + 30) = 2 ∙ 75 = 150 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 8 La somma dei cateti di un triangolo rettangolo misura 84 cm e uno è i 3/4 dell’altro. Determina il perimetro e l’area della figura. Dati e relazioni 𝑐1 + 𝑐2 = 84 𝑐𝑚 3 𝑐2 = 𝑐1 4 Richieste 1. 2p; 2. Area 𝑐1 + 𝑐2 84 = 4∙ = 4 ∙ 12 = 48 𝑐𝑚 3+4 7 𝑐2 = (𝑐1 + 𝑐2 ) − 𝑐1 = 84 − 48 =∙ 36 𝑐𝑚 𝑐1 = 4 ∙ 𝑖 = √𝑐2 2 + 𝑐1 2 = √362 + 482 = √1296 + 2304 = √3600 = 60 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 48 + 36 + 60 =∙ 144 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 48 ∙ 36 = = 48 ∙ 18 = 864 𝑐𝑚2 2 2 Equazione 𝑥 + 𝑦 = 84 𝑦= 3 𝑥 4 3 𝑥 + 𝑥 = 84 4 4𝑥 + 3𝑥 = 4 ∙ 84 7𝑥 = 4 ∙ 84 4 ∙ 84 = 48 7 3 𝑦 = ∙ 48 = 36 4 𝑥= Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 9 La differenza dei cateti di un triangolo rettangolo misura 4 cm e uno è i 3/4 dell’altro. Determina il perimetro e l’area della figura. Dati e relazioni 𝑐1 − 𝑐2 = 4 𝑐𝑚 3 𝑐2 = 𝑐1 4 Richieste 1. 2p; 2. Area 𝑐1 + 𝑐2 4 = 4 ∙ = 16 𝑐𝑚 4−3 1 𝑐2 = 𝑐1 − (𝑐1 − 𝑐2 ) = 16 − 4 = 12 𝑐𝑚 c1 |-x-|-x-|-x-|-x-| c2 |-x-|-x-|-x-|4 cm 𝑐1 = 4 ∙ 𝑖 = √𝑐1 2 + 𝑐2 2 = √162 + 122 = √256 + 144 = √400 = 20 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 16 + 12 + 20 = 48 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 16 ∙ 12 = = 8 ∙ 12 = 96 𝑐𝑚2 2 2 Equazione 𝑥−𝑦 =4 𝑦= 3 𝑥 4 3 𝑥− 𝑥=4 4 4𝑥 − 3𝑥 = 4 ∙ 4 𝑥 = 16 𝑦= 3 ∙ 16 = 12 4 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 10 La somma del cateto maggiore e dell’ipotenusa di un triangolo rettangolo è pari a 36 cm e l’ipotenusa è i 5/4 del cateto maggiore. Determina il perimetro e l’area della figura. Dati e relazioni c1 + i = 36 cm 5 i = c1 4 Richieste 1. 2p; 2. Area 5 9 +1= 4 4 9 4 𝑐1 = 36: = 36 ∙ = 4 ∙ 4 = 16 𝑐𝑚 4 9 𝑖 = (𝑐1 + 𝑖) − 𝑐1 = 36 − 16 = 20 𝑐𝑚 𝑐2 = √𝑖 2 − 𝑐22 = √202 − 162 = √400 − 256 = √144 = 12 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 36 + 12 = 48 𝑐𝑚 Equazione 𝑥 + 𝑦 = 36 𝑦= 5 𝑥 4 5 𝑥 + 𝑥 = 36 4 4𝑥 + 5𝑥 = 4 ∙ 36 9𝑥 = 4 ∙ 36 4 ∙ 36 = 16 9 5 𝑦 = ∙ 16 = 20 4 𝑥= Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 11 La lunghezza di uno dei cateti di un triangolo rettangolo è data dal medio proporzionale tra 48 e 12. Sapendo che la superficie del triangolo dato misura 840 cm2, determina il perimetro della figura. Dati e relazioni 48: c1 = c1 : 12 A = 840 cm2 Richiesta 2p 48: c1 = c1 : 12 c1 = √12 ∙ 48 = √22 ∙ 3 ∙ 24 ∙ 3 = 8 ∙ 3 = 24 𝑐𝑚 In un triangolo rettangolo i cateti sono base e altezza del triangolo. Abbiamo: b ∙ h 𝑐1 ∙ 𝑐2 = 2 2 Da cui 𝐴= 𝑐1 ∙ 𝑐2 𝑐1 ∙ 𝑐2 2 2 2∙𝐴 =𝐴→ ∙ = 𝐴 ∙ →= 𝑐2 = 2 2 𝑐1 𝑐1 𝑐1 𝑐2 = 2 ∙ 𝐴 2 ∙ 840 840 420 210 = = = = = 70 𝑐𝑚 𝑐1 24 12 6 3 𝑖 = √𝑐12 + 𝑐22 = √242 + 702 = √576 + 4900 = √5476 = 74 𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 24 + 70 + 74 = 168 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 12 Un triangolo rettangolo ha l'area di 546 cm2 e un cateto misura 84 cm. Calcola la lunghezza del perimetro del triangolo. Dati e relazioni A = 546 cm2 c1 = 84 cm Richiesta 2p In un triangolo rettangolo i cateti sono base e altezza del triangolo. Abbiamo: b ∙ h 𝑐1 ∙ 𝑐2 = 2 2 Da cui 𝐴= 𝑐1 ∙ 𝑐2 𝑐1 ∙ 𝑐2 2 2 2∙𝐴 =𝐴→ ∙ = 𝐴 ∙ →= 𝑐1 = 2 2 𝑐2 𝑐2 𝑐2 𝑐2 = 2 ∙ 𝐴 2 ∙ 546 546 273 91 = = = = = 13 𝑐𝑚 𝑐1 84 42 21 7 𝑖 = √𝑐12 + 𝑐22 = √842 + 132 = √7056 + 169 = √7225 = 85 𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 84 + 13 + 85 = 182 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 13 Calcola l’area e il perimetro di un triangolo rettangolo i cui cateti misurano rispettivamente 15 cm e 36 cm. Dimezzando le misure dei lati qual è il rapporto tra i perimetri e le aree delle due figure? Dati e relazioni c1 = 15 cm c2 = 36 cm Misure dimezzate... Richieste 1. 2p; 2. Area 𝑖 = √𝑐12 + 𝑐22 = √152 + 362 = √225 + 1296 = √1521 = 39 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 15 + 36 + 39 = 90 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 15 ∙ 36 = = = 15 ∙ 18 = 270 𝑐𝑚2 2 2 2 𝑖′ = √𝑐12 + 𝑐22 = √7,52 + 182 = √56,25 + 324 = √380,25 = 19,5 𝑐𝑚 2𝑝′ = 𝑐1 + 𝑐2 + 𝑖 = 7,5 + 18 + 19,5 = 45 𝑐𝑚 𝐴′ = 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 7,5 ∙ 18 = = = 7,5 ∙ 9 = 67,5 𝑐𝑚2 2 2 2 2𝑝 90 1 = = 2𝑝′ 45 2 𝐴 270 1 = = ′ 𝐴 67,5 4 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 14 Un triangolo rettangolo ha l'area di 96 cm2 e un cateto misura 16 cm. Calcola la lunghezza del perimetro del triangolo. 𝑐2 = Dati e relazioni A = 96 cm2 c1 = 16 cm Richiesta 2p 2 ∙ 𝐴 2 ∙ 96 96 = = = 12 𝑐𝑚 𝑐1 16 8 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 16 + 12 + 20 = 48 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 15 Calcola la misura dell’ipotenusa, del perimetro e dell’area e di un triangolo ABC, rettangolo in A, la cui altezza AH relativa all’ipotenusa misura 9,6 cm e la cui mediana AM, relativa all’ipotenusa, misura 10 cm. In un triangolo rettangolo la mediana relativa all’ipotenusa è la metà dell’ipotenusa stessa. Il triangolo rettangolo è, infatti, sempre inscrivibile in una semicirconferenza il cui diametro è l’ipotenusa mentre la mediana coincide con un raggio (teorema di Dante). Per il teorema di Dante 𝐴𝑀 ≅ 𝐵𝑀 ≅ 𝑀𝐶 𝐴𝑀 = 10 𝑐𝑚 𝐵𝐶 = 2 ∙ 10 = 20 𝑐𝑚 𝐻𝑀 = √𝑚2 − ℎ2 = √102 − 9,62 = 2,8 𝑐𝑚 𝐴𝐵 = √(10 − 2,8)2 + 9,62 = √144 = 12 𝑐𝑚 𝐴𝐶 = √(10 + 2,8)2 + 9,62 = √144 = 16 𝑐𝑚 2𝑝 = 𝑎 + 𝑏 + 𝑐 = 20 + 12 + 16 = 48 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 12 ∙ 16 = = 12 ∙ 8 = 96 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 16 Calcola la misura dell’ipotenusa, del perimetro e dell’area di un triangolo Dati e relazioni ABC, rettangolo in C, la cui altezza CH relativa all’ipotenusa misura 9,6 triangolo rettangolo ABC cm e la cui mediana CM, relativa all’ipotenusa, misura 10 cm. C = 90° CH = hi = 9,6 cm M punto medio ipot. CM = 10 cm Richieste 1. ipotenusa; 2. 2p; 3. Area 𝑖 = 𝐴𝐵 = 2 ∙ 𝐶𝑀 = 2 ∙ 10 = 20 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 𝐴𝐵 ∙ 𝐶𝐻 20 ∙ 9,6 = = = 10 ∙ 9,6 = 96 𝑐𝑚2 2 2 2 𝐻𝑀 = √𝐶𝑀2 − 𝐶𝐻 2 = √102 − 9,62 = √100 − 92,16 = √7,84 = 2,8 𝑐𝑚 𝐴𝐻 = 𝐴𝑀 − 𝐻𝑀 = 10 − 2,8 = 7,2 𝑐𝑚 𝐴𝐶 = √𝐶𝐻 2 + 𝐴𝐻 2 = √9,62 + 7,22 = √92,16 + 51,84 = √144 = 12 𝑐𝑚 𝐵𝐻 = 𝐵𝑀 + 𝐻𝑀 = 10 + 2,8 = 12,8 𝑐𝑚 𝐵𝐶 = √𝐶𝐻 2 + 𝐵𝐻 2 = √9,62 + 12,82 = √92,16 + 163,84 = √256 = 16 𝑐𝑚 Un triangolo rettangolo si può sempre inscrivere in una semicirconferenza; di conseguenza la mediana relativa all'ipotenusa è la metà dell'ipotenusa ed è il raggio del cerchio circoscritto. 2𝑝 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 = 20 + 16 + 12 = 48 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 17 Calcola la misura del perimetro e dell’area e di un triangolo ABC, rettangolo in C, la cui ipotenusa AB misura 112 cm e l’altezza CH e la mediana CM relativa a esse relative misurano rispettivamente 30 cm e 34 cm. Dati e relazioni triangolo rettangolo ABC C = 90° AB = 𝑖 = 112 cm CH = 30 cm M punto medio ipot. CM = 34 cm Richieste 1. 2p; 2. Area 𝐴𝐵 112 = = 56 𝑐𝑚 2 2 𝑏 ∙ ℎ 𝐴𝐵 ∙ 𝐶𝐻 112 ∙ 30 𝐴= = = = 112 ∙ 15 = 1680 𝑐𝑚2 2 2 2 𝐴𝑀 = 𝑀𝑁 = 𝐻𝑀 = √𝐶𝑀2 − 𝐶𝐻 2 = √342 − 302 = √1156 − 900 = √256 = 16 𝑐𝑚 𝐴𝐻 = 𝐴𝑀 − 𝐻𝑀 = 56 − 16 = 40 𝑐𝑚 𝐴𝐶 = √𝐶𝐻 2 + 𝐴𝐻 2 = √302 + 402 = √900 + 1600 = √2500 = 50 𝑐𝑚 𝐵𝐻 = 𝐵𝑀 + 𝐻𝑀 = 56 + 16 = 72 𝑐𝑚 Un triangolo rettangolo si può sempre inscrivere in una semicirconferenza; di conseguenza la mediana relativa all'ipotenusa è la metà dell'ipotenusa ed è il raggio del cerchio circoscritto. 𝐵𝐶 = √𝐶𝐻 2 + 𝐵𝐻 2 = √722 + 302 = √5184 + 900 = √6084 = 78 𝑐𝑚 2𝑝 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 = 112 + 78 + 50 = 240 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 18 L’area di un triangolo rettangolo è di 4374 cm2 e un suo cateto misura 108 cm. Calcola il perimetro del triangolo e l’altezza relativa all’ipotenusa. 𝑐2 = Dati e relazioni A = 4374 cm2 c1 = 18 cm RichiestE 1. 2p; 2. altezza relativa ipot. 2 ∙ 𝐴 2 ∙ 4374 4374 2187 729 = = = = = 81 𝑐𝑚 𝑐1 108 54 27 9 𝑖 = √𝑐12 + 𝑐22 = √1082 + 812 = √11664 + 6561 = √18225 = 135 𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 108 + 81 + 135 = 324 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 19 L’altezza AH relativa alla base di un triangolo misura 40 cm. Le proiezioni BH e CH dei due lati sulla base del triangolo misurano rispettivamente 42 cm e 75 cm. Esegui il disegno e calcola la misura del perimetro e dell’area del triangolo. Dati e relazioni BC base CH altezza relativa a BC AH = 40 cm BH = 42 cm CH = 75 cm Richieste 1. 2p; 2. Area 𝐴𝐵 = √𝐴𝐻 2 + 𝐵𝐻 2 = √402 + 422 = √1600 + 1764 = √3364 = 58 𝑐𝑚 𝐴𝐶 = √𝐴𝐻 2 + 𝐶𝐻 2 = √402 + 752 = √1600 + 5625 = √7225 = 85 𝑐𝑚 𝐵𝐶 = 𝐵𝐻 + 𝐶𝐻 = 42 + 75 = 117 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 58 + 85 + 117 = 260 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 117 ∙ 40 = = 117 ∙ 20 = 2340 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 20 La somma dei due cateti di un triangolo rettangolo è di 46 cm e un cateto supera l’altro di 14 cm. Calcola l’area e la misura del perimetro del triangolo. Dati e relazioni c1 + c2 = 46 cm c1 − c2 = 14 cm Richieste 1. 2p; 2. Area; 3. apotema; (𝑐1 + 𝑐2 ) + (𝑐1 − 𝑐2 ) 46 + 14 60 = = = 30 𝑐𝑚 2 2 2 (𝑐1 + 𝑐2 ) − (𝑐1 − 𝑐2 ) 46 − 14 32 𝑐1 = = = = 16 𝑐𝑚 2 2 2 𝑐1 = 𝑖 = √𝑐12 + 𝑐22 = √162 + 302 = √256 + 900 = √1156 = 34 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 16 + 30 + 30 = 80 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 16 ∙ 30 = = 8 ∙ 30 = 240 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 21 L’ipotenusa e un cateto di un triangolo rettangolo misurano rispettivamente Dati e relazioni 75 cm e 72 cm. Di quanto differisce l’area del triangolo dato e quella di un i = 75 cm quadrato isoperimetrico a questo? c1 = 72 cm 2prettangolo = 2pquadrato Richiesta differenza delle aree delle due figure 𝑐2 = √𝑖 2 − 𝑐22 = √752 − 722 = √5625 − 5184 = √441 = 21 𝑐𝑚 2𝑝𝑟𝑒𝑡𝑡𝑎𝑛𝑔𝑜𝑙𝑜 = 2𝑝𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑜 = 𝑐1 + 𝑐2 + 𝑖 = 21 + 72 + 75 = 168 𝑐𝑚 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 21 ∙ 72 = = = 21 ∙ 36 = 756 𝑐𝑚2 2 2 2 2𝑃 168 84 𝑙𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑜 = = = = 42 𝑐𝑚 4 4 2 𝐴𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑜 = 𝑙 2 = 422 = 1764 𝑐𝑚2 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 = 𝐴𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑜 − 𝐴𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 = 1764 − 756 = 1008 𝑐𝑚2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 22 L’area di un triangolo rettangolo è di 42,135 cm2 e un suo cateto misura 7,95 cm. Calcola il perimetro del triangolo. 𝑐2 = Dati e relazioni A = 42,135 cm2 c1 = 7,95 cm Richiesta 2p 2 ∙ 𝐴 2 ∙ 42,135 84,27 8427 = = = = 10,6 𝑐𝑚 𝑐1 7,95 7,95 795 𝑖 = √𝑐12 + 𝑐22 𝑖 = √7,952 + 10,62 = √63,2025 + 112,36 = √175,5625 = 13,25 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 7,95 + 10,6 + 13,25 = 31,8 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 23 Uno dei cateti di un triangolo rettangolo è i 4/5 dell’ipotenusa che misura 40 cm. Calcola il perimetro e l’area del triangolo. 𝑐1 = Dati e relazioni i = 40 cm 4 c1 = ∙ i 5 Richieste 1. 2p; 2. Area 4 4 ∙ 𝑖 = ∙ 40 = 4 ∙ 8 = 32 𝑐𝑚 5 5 𝑐2 = √𝑐12 − ℎ2 = √402 − 322 = √1600 − 1024 = √576 = 24 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 32 + 24 + 40 = 96 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 32 ∙ 24 = = 32 ∙ 12 = 384 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 24 La differenza dei cateti di un triangolo rettangolo misura 70 cm e uno è i 5/12 dell’altro. Determina il perimetro e l’area della figura. Dati e relazioni c1 − c2 = 70 cm 5 c2 = ∙c 12 1 Richieste 1. 2p; 2. Area 𝑐1 + 𝑐2 70 = 12 ∙ = 120 𝑐𝑚 12 − 5 7 𝑐2 = 𝑐1 − (𝑐1 − 𝑐2 ) = 120 − 70 = 50 𝑐𝑚 𝑐1 = 12 ∙ 𝑖 = √𝑐1 2 + 𝑐2 2 = √1202 + 502 = √14400 + 2500 = √16900 = 130 𝑐𝑚 2𝑝 = 𝑐1 + 𝑐2 + 𝑖 = 120 + 50 + 130 = 300 𝑐𝑚 𝐴= 𝑐1 ∙ 𝑐2 120 ∙ 50 = = 60 ∙ 50 = 3000 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 25 L’area di un triangolo rettangolo ABC è di 840 cm2 e il cateto maggiore AB misura 42 cm. Calcola il perimetro e l’area del triangolo ABM, dove il segmento BM è la mediana relativa al cateto minore AC. Dati e relazioni A = 840 cm2 AB = i = 42 cm BM mediana di AC Richieste 1. 2p(ABM); 2. Area(ABM) 2 ∙ 𝐴 2 ∙ 840 = = 2 ∙ 20 = 40 𝑐𝑚 𝐴𝐶 42 𝐴𝐶 40 𝐴𝑀 = = = 20 𝑐𝑚 2 2 𝐴𝐶 = 𝐵𝑀 = √𝐴𝑀2 + 𝐴𝐵 2 𝐵𝑀 = √202 + 422 = √400 + 1764 = √2164 = 46,51 𝑐𝑚 2𝑝𝐴𝐵𝑀 = 𝐴𝐵 + 𝐵𝑀 + 𝐴𝑀 = 42 + 46,51 + 20 = 100,51 𝑐𝑚 𝐴𝐴𝐵𝑀 = 𝐴𝐵 ∙ 𝐴𝑀 42 ∙ 20 = = 42 ∙ 10 = 420 𝑐𝑚2 2 2 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 26 In un triangolo rettangolo le misure dei due cateti sommate tra di loro misurano 5,6 m e uno è i 3/4 dell’altro. Calcola il perimetro e l’area del triangolo rettangolo. Dati e relazioni c1 + c2 = 5,6 m 3 c2 = ∙ 𝑐1 4 Richieste 1. 2p; 2. Area 4 3 7 + = 4 4 4 c1|x|x|x|x| c2|x|x|x| Frazione corrispondente alla differenza delle due misure 7 4 𝑐1 = 5,6: = 5,6 ∙ = 0,8 ∙ 4 = 3,2 𝑐𝑚 4 7 𝑐2 = (𝑐1 + 𝑐2 ) − 𝑐1 = 5,6 − 3,2 = 2,4 𝑐𝑚 𝐴= 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 3,2 ∙ 2,4 = = = 3,2 ∙ 1,2 = 3,84 𝑐𝑚2 2 2 2 𝑐 = √𝐴𝐵 2 + 𝐴𝐶 2 = √3,22 + 2,42 = √10,24 + 5,76 = √16 = 4 𝑐𝑚 2𝑝 = 𝑎 + 𝑏 + 𝑐 = 4,2 + 2,4 + 4 = 10,6 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 27 Una composizione è formata da una struttura a triangolo rettangolo la cui ipotenusa misura 5 m, il cateto che si alza dal terreno, in corrispondenza dell’angolo retto, è di 4 m. A questa struttura su terreno è appoggiata un triangolo ottusangolo che ha un lato in comune con l’ipotenusa del triangolo rettangolo e che un l’altro lato come prolungamento del cateto del triangolo rettangolo appoggiato al terreno. Il triangolo ottusangolo forma con il terreno un angolo di 45°. Calcola la superficie di materiale necessario a costruire quest’ultimo triangolo e il suo perimetro. Dati e relazioni triangolo ABC ̂ = 90° A 𝐴𝐶 = 4 𝑚 𝐵𝐶 = 5 𝑚 𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 𝐵𝐶𝐷 𝑜𝑡𝑡𝑢𝑠𝑎𝑛𝑔. ̂ = 45° D Richieste Area(BCD) 𝐴𝐵 = √𝐵𝐶 2 − 𝐴𝐶 2 = √25 − 16 = √9 = 3 𝑐𝑚 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 3 ∙ 4 = = = 6 𝑐𝑚2 2 2 2 𝐸𝑠𝑠𝑒𝑛𝑑𝑜 ∠𝐷 = 45° 𝑖𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑜𝑙𝑜 𝐴𝐷𝐶 è 𝑖𝑠𝑜𝑠𝑐𝑒𝑙𝑒 (𝐴𝐷 ≅ 𝐴𝐶) 𝐴𝐴𝐵𝐶 = 𝑏 ∙ ℎ 𝑐1 ∙ 𝑐2 4 ∙ 4 = = = 8 𝑐𝑚2 2 2 2 = 𝐴𝐴𝐷𝐶 − 𝐴𝐴𝐵𝐶 = 8 − 6 = 2 𝑐𝑚2 𝐴𝐴𝐷𝐶 = 𝐴𝐵𝐷𝐶 𝐵𝐷 = 𝐴𝐷 − 𝐴𝐵 = 4 − 3 = 1 𝑐𝑚 𝐶𝐷 = √𝐴𝐷2 + 𝐴𝐶 2 = √16 + 16 = √2 ∙ 16 = 4√2 𝑐𝑚 2𝑝𝐵𝐶𝐷 = 𝐵𝐶 + 𝐵𝐷 + 𝐶𝐷 = 5 + 1 + 4√2 = (6 + 4√2)𝑐𝑚 = 11,66 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 28 In un triangolo ABC, rettangolo in A, la somma del cateto 𝐴𝐵 con l’ipotenusa 𝐵𝐶 misura 81 cm. Sapendo che 𝐵𝐶 = 𝐴𝐵 + 1 𝑐𝑚, calcola il perimetro e l’area del triangolo. Dati e relazioni triangolo ABC AC ipotenusa 𝐴𝐵 + 𝐵𝐶 = 81 𝑐𝑚 𝐵𝐶 = 𝐴𝐵 + 1 𝑐𝑚 Richieste Perimetro e area 𝐴𝐵 + 𝐵𝐶 − 1 81 − 1 40 = = = 20 𝑐𝑚 2 2 2 𝐵𝐶 = 𝐴𝐵 + 1 𝑐𝑚 = 20 + 1 = 21 𝑐𝑚 𝐴𝐵 = 𝐴𝐶 = √𝐵𝐶 2 + 𝐴𝐵 2 = √412 − 402 = √1681 − 1600 = √81 = 9 𝑐𝑚 2𝑝 = 𝐴𝐵 + 𝐵𝐶 + 𝐴𝐶 = 20 + 21 + 9 = 50 𝑐𝑚 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale Teorema di Pitagora. Triangolo rettangolo. Livello INTERMEDIO. Eserciziario ragionato con soluzioni. - 29 Keywords Geometria, Geometria piana, teorema di Pitagora, Pitagora, Equivalenza, Misura delle aree, Area, Superficie, Triangolo, Triangolo isoscele, Triangolo rettangolo, Triangoli, Problemi di geometria con soluzioni Geometry, Pythagoras, Pythagoras’s theorem, Area, Area Measurement, Triangle, Triangles, triangle equilateral, triangle isosceles, triangle scalene, Geometry Problems with Solutions Geometría, Área, Superficie, Perímetro y áreas de figures planes, triángulos, triángulo, equilátero, isósceles, escaleno, Área figures planes Géométrie, Pythagore, Théorème de Pythagore, Aire, Triangle, Isocèle, équilatéral, scalène, Superficie, Aires et périmètres Geometrie, Umfang, Fläche, Triangel, Dreieck, spitzwinkliges Dreieck, rechtwinkliges Dreieck, stumpfwinkliges Dreieck, Satz des Pythagoras, Pythagoras, Dreiecksgeometrie, Satz, Mathematik Teorema de Pitàgores Stelling van Pythagoras Pisagor teoremi Πυθαγόρειο θεώρημα Den pythagoræiske læresætning Teorema de Pitágoras Pythagoras’ læresetning Pythagoras sats Pythagoraan lause Теорема Піфагора Pythagorova věta Twierdzenie Pitagorasa Teorema lui Pitagora مبرهنة فيثاغورس 勾股定理 ピタゴラスの定理 Copyright© 1987-2016 owned by Ubaldo Pernigo, www-ubimath.org - contact: [email protected] Il presente lavoro è coperto da Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale
Documenti analoghi
Espressioni con frazioni 1
Raccolta di espressioni con le frazioni e le quattro operazioni - 2
Teorema di Pitagora
20 cm, determina l’area e il perimetro del triangolo.
8. Un triangolo rettangolo ABC, rettangolo in A, l’ipotenusa BC, che è il doppio del
cateto minore AB, misura 8 cm. Calcola il perimetro e l’ar...
Teorema di Pitagora
18. Un rombo con il perimetro di 52 cm ha la diagonale maggiore che è i 24/13 del lato. Calcola
l’area del rombo e la misura del perimetro e dell’area di un rettangolo avente la base di 8 cm e la
d...