I lecture - Introduction
Transcript
I lecture - Introduction
Integrated Photonic Quantum Mechanics Materials Science Nano/Bio-photonic Optoelettronics Optics Integrated Photonic - G. Breglio L1 Electronic 1 Applications of Optoelectronic Systems Solar cells OLED display LED Integrated Photonic - G. Breglio L1 Laser diodes Flexible OLED 2 Information Contact: Giovanni Breglio [email protected] 081 76 83128 Website: http://www.docenti.unina.it E-mail [email protected] Ricevimento: martedì ore 12.30 2°piano plaz.na DIET Didactic Material : S.O. Kasap, Optoelectronics and Photonics H. Nishihara, Optical Integrated Circuits L. Pavesi, Silicon Photonics Papers, slides Integrated Photonic - G. Breglio L1 3 Lecture Organization 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Richiami di di ottica ottica Richiami di trasmissione guidata. Guide planari. Dispositivi ottici passivi. Richiami di fibre ottiche. Componenti a fibre ottiche. Principi fisici di alterazione delle proprietà ottiche. Dispositivi ottici attivi integrati. Gli emettitori LASER. Fotorivelatori e fotodiodi. Tecnologie di realizzazione. Integrated Photonic - G. Breglio L1 4 Typical Optoelectronic System Light sources Optical Source Transfer for Medium of light the light through transmission the system Detectors Detector Lasers Laser Directly Free space through free space Photodiodes photodiodes LEDs LED Indirectly With lenses using and lenses mirrors& mirrors Photomultipliers photomultipliers Gas discharges With Gas light guides Waveguide Photographic film Filament lamps wire optical fibres Optical Fibers CCDs & diode array arrays Fluorescent lamps TV tubes Human eye Natural sources Source The eye Integrated Photonic - G. Breglio L1 5 The Compact Optical Disc Integrated Photonic - G. Breglio L1 6 Compact Optical Disc Pick-up Integrated Photonic - G. Breglio L1 7 Compact Optical Disc (CD) Integrated Photonic - G. Breglio L1 8 Compact Optical Disc Player Cross-section of a double-layer DVD+R disc Integrated Photonic - G. Breglio L1 9 Fiber Optic Communication Integrated Photonic - G. Breglio L1 10 Different connections Integrated Photonic - G. Breglio L1 11 The Optical Fiber history Professor Charles Kao who has been recognized as the inventor of fiber optics is receiving an IEE prize from Professor John Midwinter (1998 at IEE Savoy Place, London, UK; courtesy of IEE) Integrated Photonic - G. Breglio L1 12 Optical Communications TRANSMITTER + – Integrated Photonic - G. Breglio L1 RECEIVER FIBRE + – 13 Optical Networks System Amplifiers Modulator Fiber Laser Detector Input signal Integrated Photonic - G. Breglio L1 Output signal 14 Base Project of an optical link Transmitter junction Fiber Integrated Photonic - G. Breglio L1 Connector Fiber Receiver 15 Standard Single-Mode (SM) Fibre Fibre Fibrecore core SiO SiO22++GeO GeO22 ØØ10 10µµm m nn≅≅1.443 1.443 SiO SiO22Cladding Cladding ØØ125 125µµm m nn≅≅1.44 1.44 Primary Primarycoating coating(soft) (soft) ØØ400 400µµm m Secondary Secondarycoating coating(hard) (hard) ØØ11mm mm Integrated Photonic - G. Breglio L1 16 attenuation (dB/km) Fibre (SiO22) losses 1.0 IR limits scattering Rayleigh 1.5 UV losses OH--pick 0.5 0.16 dB/km 0.2 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 wavelength (µm) Integrated Photonic - G. Breglio L1 17 Regeneration Unit shape and time regeneration Modulation & bit rate dipendent! Biasing Integrated Photonic - G. Breglio L1 Telemetry & Remote Control 18 In fiber optical amplifier Er3+-doped fiber (10 - 20 m) Signal in Optical isolator Wavelength-selective coupler Splice λ = 1550 nm Splice Optical isolator Signal out λ = 1550 nm Pump laser diode λ = 980 nm Integrated Photonic - G. Breglio L1 Termination 19 Erbium-Doped Fiber Amplifier (EDFA) EDFA gain (dB) 30 20 10 0 -10 1520 1530 1540 1550 1560 1570 wavelength (nm ) Er-doped fiber PUMP LASER 0.98 µm or 1.48 µm MUX Integrated Photonic - G. Breglio L1 FILTER 20 SLAB waveguide theory Light Light n2 Light Light n2 n1 > n2 Integrated Photonic - G. Breglio L1 21 Dielectric Filters 0 dB Incoming Spectrum Transmitted Spectrum Reflected Spectrum 30 dB Layers Substrate 1535 nm Integrated Photonic - G. Breglio L1 1555 nm 22 Snell’s Snell’s law law and and TIR TIR n1 sinθ1 = n2 sinθ2 C n2 n1 θ1 θ1 1 1 A B rTE = rTM = Integrated Photonic - G. Breglio L1 n1 cos θ1 − n22 − n12 sin2 θ1 n1 cos θ1 + n22 − n12 sin2 θ1 n22 cos θ1 − n1 n22 − n12 sin2 θ1 n22 cos θ1 + n1 n22 − n12 sin2 θ1 23 Multimodal Dispersion High modes Low modes Cladding Light pulse Core Intensity Intensity Axial 0 t Integrated Photonic - G. Breglio L1 Spread, ∆ τ t 24 RIB waveguides Integrated Photonic - G. Breglio L1 25 Laser Typical Typical values: values: Power Power in in fiber: fiber: Max: Max: Direct Direct Modulation Modulation :: Integrated Photonic - G. Breglio L1 1-10 mW 1-10 mW 100-300 100-300 mW mW 1-10 GHz 1-10 GHz 26 Semiconductor Lasers DIP Type CAN case Integrated Photonic - G. Breglio L1 Butterfly Type Coaxial PKG 27 Integrated DFB-ME • 10Gb/s module, Ith = 20mA, Pmax = 4mW @80mA , extinction ratio = 15dB for -2.5V. Integrated Photonic - G. Breglio L1 28 Passive Components Integrated Photonic - G. Breglio L1 29 AWG λ1a λ2a λ3a λ4a λ1bλ2bλ3b λ4b λ1c λ2c λ3c λ4c λ1dλ2dλ3d λ4d Rows .. Integrated Photonic - G. Breglio L1 λ1a λ4b λ3c λ2d λ2a λ1b λ4c λ3d λ3a λ2b λ1c λ4d λ4a λ3b λ2c λ1d .. are transformed in .. .. columns 30 AWG AWG Arrayed Arrayed Waveguide Waveguide Grating Grating Waveguide Array Free Propagation Regions Focal plane Input output waveguide waveguides transm ission (dB) 0 λ1 -10 λ2 λ3 λ4 -20 -30 -40 1550 1555 1560 1565 1570 1575 wavelength (nm) Integrated Photonic - G. Breglio L1 31 Integrated Light Modulation Integrated Photonic - G. Breglio L1 32 Integrated Light Modulation Based on Mach-Zehnder DFB laser with external modulator on the same chip Laser Modulatore Integrated Photonic - G. Breglio L1 33 Detector and Photodiode + Typical Typical Values: Values: Responsivity Responsivity Bandwidth Bandwidth :: – ~1 ~1 mA mA // mW mW 1-20 1-20 GHz GHz Integrated Photonic - G. Breglio L1 34 Optical Communication Systems First Generation, ~1975, 0.8 µm Fiber-MM, Laser GaAs o LED Second Generation, ~1980, 1.3 µm, fiber MM SM InGaAsP FP-laser or LED Third Generation, ~1985, 1.55 µm, SM-fiber InGaAsP DFB-laser, ~ 1990 Optical Amplifier Attenuation Fourth Generation, 1996, 1.55µm WDM systems 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Wavelength (µm) Integrated Photonic - G. Breglio L1 35 WDM optical optical fibre fibre + – Receiver optical Transmitter Optical Transmitter Receiver Multi wavelength Multi wavelength MUX Integrated Photonic - G. Breglio L1 DMX 36 λ1 NT λ2 NT λn-1 NT λn Demultiplexer NT Multiplexer Network Terminal WDM Transmitter system wavelength convention Integrated Photonic - G. Breglio L1 Add and Drop λ1 NT λ2 NT λn-1 NT λn NT Wavelength Converter 37 Transmission capability 10 # WDM-channels 256 10 64 1 16 0. 1 4 1 0.01 G b/ G b/ 0 1 G b/ s ‘99 • ‘98 • ‘97 • s G b/ s ‘00 • ‘05? • ‘96 s ‘80 ‘83 Tb /s ‘86 • •0.1 • 1 • ‘89 • ‘98 •10 100 Channel bit rate (Gb/s) Integrated Photonic - G. Breglio L1 38 Transmission capability 10000 WDM experiments 1000 (10x / 2.5 yrs) Capability (Gb/s) 5 yrs 100 ETDM 10 1 installed (10x / 6 yrs) 0,1 0,01 1980 Integrated Photonic - G. Breglio L1 1985 1990 1995 2000 39 Underwater Underwater Links Links Integrated Photonic - G. Breglio L1 40 Wavelength Division Multiplexing Transmitter Multi wavelength Receiver Multi wavelength MUX DMX ADM ADM Detector Tunable laser ADM System SystemCapability: Capability: 1996: 16x2.5 1996: 16x2.5Gb/s Gb/s 40 Gb/s 40 Gb/s 1998: 80x2.5 1998: 80x2.5Gb/s Gb/s 200 200Gb/s Gb/s 2000: 40x10 2000: 40x10 Gb/s Gb/s 0.4 0.4Tb/s Tb/s ADM: Add-Drop Multiplexer OXC: Optical CrossConnect Integrated Photonic - G. Breglio L1 OXC ADM 41 4λ 2x2 OXC with switches 1 1 in out OXC 2 2 X X X X Integrated Photonic - G. Breglio L1 Losses on-chip Crosstalk Inter-channel Dimensions < 16 dB < -20 dB 8x12 mm22 42
Documenti analoghi
Sistemi a Microonde e Ottici-I modulo
R.E. Collin, Foundations for microwave Engineering. McGraw-Hill
Jordan Balmain, Electromagnetic Waves and Radiating Systems Prentice Hall Electrical engineering series
R. Sorrentino, G. Bianch,. In...
M. Romagnoli - Scuola Superiore di Sant`Anna
Technology Platform: Silicon Photonic
Silicon photonics has emerged as a key enabling technology for future high bandwidth
interconnects for servers , data centers and high performance computing s...