boozer
Transcript
boozer
Associazione Euratom-ENEA sulla Fusione Presented by P. Micozzi PROTO-SPHERA Workshop Frascati, 18-19/03/2002 2 Associazione Euratom-ENEA sulla Fusione 1) Ideal MHD Code for "Flux-Core Spheromak" Configurations 2) PROTO-SPHERA Stability Analysis 3) Stability Analysis of the Chandrasekhar-Kendall-Furth Configurations PROTO-SPHERA Workshop Frascati, 18-19/03/2002 3 Associazione Euratom-ENEA sulla Fusione In PROTO-SPHERA resistive MHD instabilities are required to inject magnetic helicity from Screw Pinch (SP) into Spherical Torus (ST), but the combined configuration must be stable in ideal MHD New ideal MHD stability codes*, built in collaboration with François Rogier (ONERA de Toulouse, France) * Validated upon the well-known stability results of analytic Solovev equilibria with fixed and free boundary conditions in presence of vacuum regions surrounding the plasma The codes contain a number of new features: • Boozer coordinates on open field lines are defined and joined to the closed field lines Boozer coordinates at the ST-SP interface • Boundary conditions at the ST-SP interface • Vacuum magnetic energy in presence of multiple plasma boundary • 2D finite element method for accounting the perturbed vacuum energy • Presence of plasma on the symmetry axis PROTO-SPHERA Workshop Frascati, 18-19/03/2002 4 Associazione Euratom-ENEA sulla Fusione MAGNETIC COORDINATES WITH OPEN FIELD LINES Ideal MHD stability code treats configurations with closed and open field lines New feature: Boozer coordinates joined at SP-ST interface Boozer Coordinates (yT,q,f) (yT radial, q poloidal, fG geometric) r r f toroidal≠ I(y T ) = (1 2p )ò Ñ Ù B × dST = m0Ip/2p r r f (y T ) = (1 2 p)ò Ñ Ù B × dSp = RBT yT=tor. flux/2p in ST, i/ (yT)=rotat.tran. Jacobian g = èæ f + i/Iøö /B2 r ö r 2 r æ r ç Nonorthogonal: g * Ñy T = Ñ y T ×çç Ñq-i/ Ñf÷÷÷ è r r r rø b* from B = b*Ñy T + IÑq + fÑf Combined equilibrium calculation PROTO-SPHERA Workshop • • Spherical Torus (ST), closed lines Screw Pinch (SP), open line Frascati, 18-19/03/2002 5 Associazione Euratom-ENEA sulla Fusione ENERGY PRINCIPLE y STABLE rcode: r displacement (normal x , binormal h and parallel m) r B Ù Ñy T æ Ih y r r ör yr x = x ey + h + 2 - m B : x = x • Ñy T , 2 èB ø B r r r r r æ ö ç =h= x • è Ñq - /iÑfø , m g x • Ñf Fourier expansion of displacement x = å x l (y T ) sin(m l q - n l f ) Ü nl=n is a pure toroidal number h = å hl (y T ) cos(m l q - n l f) Ü up/down symmetry Ü ml is a spectrum of poloidal harmonics y l l ( m = å m l (y T ) cos m l q - n l f l ) Boundary conditions at ST-SP interface in ideal MHD: y 1) Constraint of continuous normal displacement x PROTO-SPHERA Workshop Frascati, 18-19/03/2002 6 Associazione Euratom-ENEA sulla Fusione 2) Tangential displacements h, m jump (no constraint) PROTO-SPHERA Workshop Frascati, 18-19/03/2002 7 Associazione Euratom-ENEA sulla Fusione Boozer coordinates can be chosen almost arbitrary inside the Pinch • Coordinates join "smoothly" at ST-SP interface [yT= ;qX≤q≤2p-qX] imposing q q T qX • Coordinates are defined through the SP (up to the symmetry axis R=0) using the force-free equilibrium equation: df/dy+ (y)dI/dy=0 Radial coordinate yT inside the SP: ( <yT< ) PROTO-SPHERA Workshop Frascati, 18-19/03/2002 8 Associazione Euratom-ENEA sulla Fusione PROTO-SPHERA Workshop Frascati, 18-19/03/2002 9 Associazione Euratom-ENEA sulla Fusione PERTURBED VACUUM MAGNETIC ENERGY Using the perturbed scalar magnetic potential F, the vacuum contribution r r m0 is expressed as an integral over the plasma surface: dWv = òò F ÑF × dSy 2 Sy with multiple plasma surfaces The vacuum contribution is present on three plasma surfaces: (i= N ST y ), v2 X y T = y T + eSP 2 p/i X (i= N ST y +1) v3 max ST SP y T = y T - e symm 2 p /isymm (i= N y + N y ) X y v1 /X T = y T - eST 2 p i Perturbed vacuum magnetic energy PROTO-SPHERA Workshop Frascati, 18-19/03/2002 10 Associazione Euratom-ENEA sulla Fusione In vacuum the 2D scalar potentials ˜ nc cos(nf ) + F ˜ nssin (nf )) obeys: F=F n cs æ n{sc ö ˜ 2 ˜ 1 ¶ ç R ¶F ÷ + ¶ F - n 2 F˜ n{cs = 0 R ¶R çè ¶R ÷ø ¶Z 2 R2 G G ì í î with B.C. ¶F ( i) y S ˜ ns ¶F ¶n { ¶n ( i) y ) [ ( )] (i) xk y(i) T (i/ mk - nk ) [ ( )] S =å k =å k = 0 , on conductors Sc ) i /i( mk - nk ( )( xk y(i) T ˜ nc ¶n ˜ ¶F n sc (i ) (i) cosm q - nk n q r k m0 g(i) Ñy(Ti) ( ) (i) (i) sinm q - nkn q , r k m0 g(i) Ñy(Ti) on all the three y v(i) surfaces T nq ffG (geometrical-Boozer) azimuth PROTO-SPHERA Workshop Frascati, 18-19/03/2002 11 Associazione Euratom-ENEA sulla Fusione 2D finite element method to solve the equation for the perturbed scalar potential PROTO-SPHERA Workshop Frascati, 18-19/03/2002 12 Associazione Euratom-ENEA sulla Fusione AXIS (R=0) rTHE PROBLEM r r OF THE SYMMETRY r r Ñ yT æ B Ù Ñy T æç b*xy -Ih ö y y ö x = x r 2 + è h- g *x ø +ç - m÷÷ B inadequate for plasmas at R=0 2 B2 B ø è Ñy T r r y 1) Ñy T ® 0 like Ñy T » R on symmetry axis, so x ®0 to avoid divergences 1/2+e 2) h( y T ® y max on the degenerate X-point (B=0), so h®0 to avoid T )≈r divergences y 1) x =0 at the symmetry axis yT= (after degenerate X-point, yT= 2) h=0 at yT= easy to impose, but questionable! does not coincide with symmetry axis) impossible to impose, as no (¶h/¶yT) in energy principle PROTO-SPHERA Workshop Frascati, 18-19/03/2002 13 Associazione Euratom-ENEA sulla Fusione SOLUTION OF THE R=0 PROBLEM (STABLEC code) Only way to solve the symmetry axis problem is a change of variables: y x x˜ = r Ñy T ˜= h h B r ˜ ˜ In terms of the new variables ( x , h,m) the perturbed displacement x becomes: r r æ æ r r ö r ö r r Ñ y Ñ y T T ç ç Ñy T ˜ ÷ B Ù Ñy T ÷ I ˜ ˜ ˜ ˜ -m B + çh- g * + çb* x=x r x÷ x+ h ÷ B B ÷ B B ç ÷ Ñy T ç ø ø è è All the divergences on the symmetry axis are avoided Prices to pay: • • expression of the perturbed potential energy dWp much more complicated slower convergence of w2 by varying range of poloidal numbers [mmin,mmax] PROTO-SPHERA Workshop Frascati, 18-19/03/2002 14 Associazione Euratom-ENEA sulla Fusione STABILITY RESULTS FOR PROTO-SPHERA • • • • Formation sequence of PROTO-SPHERA: ST toroidal current Ip = 30®240 kA, i.e. Ip/Ie = 0.5®4, A=R/a= 1.8®1.2 Three value of ST b=2m0<P>Vol/<B2>Vol considered: 10%, 20% and 30% At b≈10% PROTO-SPHERA stable up to: y max Ip/Ie=4 (Ip=240 kA), A=1.2 if x ( y T )=0 is imposed in STABLE code y Ip/Ie=2 (Ip=120 kA), A=1.3 if x ( y max T )≠0 (with both STABLE & STABLEC) At b≈20% PROTO-SPHERA stable up to: y Ip/Ie=3 (Ip=180 kA), A=1.25 if x ( y max T )=0 is imposed in STABLE code y Ip/Ie=2 (Ip=120 kA), A=1.3 if x ( y max T )≠0 (with both STABLE & STABLEC) • At b≈30% PROTO-SPHERA stable only up to: Ip/Ie=1 (Ip=60 kA), A=1.5, but at higher Ip the ST alone is fixed-boundary unstable PROTO-SPHERA Workshop Frascati, 18-19/03/2002 15 Associazione Euratom-ENEA sulla Fusione PROTO-SPHERA (Ip=120 kA, Ie=60 kA, b≈20%, A=1.3) toroidal number n=1, poloidal harmonics mÎ [-5,15] y max x ( y T )=0 y max x ( y T )≠0 Stable oscillatory motions on resonant q surfaces PROTO-SPHERA Workshop Frascati, 18-19/03/2002 16 Associazione Euratom-ENEA sulla Fusione PROTO-SPHERA (Ip=180 kA, Ie=60 kA, b≈20%, A=1.25) toroidal number n=1, poloidal harmonics mÎ [-5,15] Upper/lower limiters needed on SP y max x ( y T )=0 Stable motions y max x ( y T )≠0 Kink of the SP, Tilt of the ST PROTO-SPHERA Workshop Frascati, 18-19/03/2002 17 Associazione Euratom-ENEA sulla Fusione PROTO-SPHERA (Ip=210 kA, Ie=60 kA, b≈20%, A=1.25) toroidal number n=1, poloidal harmonics mÎ [-5,15] y max x ( y T )=0 y max x ( y T )≠0 Kink of the SP, Tilt of the ST PROTO-SPHERA Workshop Frascati, 18-19/03/2002 18 Associazione Euratom-ENEA sulla Fusione COMPARISON WITH THE TS-3 EXPERIMENT TS-3 results extremely important since: 1) 2) The only experiment with similar formation scheme and without close fitting shell, that has sustained a "Flux-Core Spheromak" for tens of Alfvén times Strong analogies between TS-3 and PROTO-SPHERA, but also differences: i) ST Þ the rotational transform is quite different in the two experiments PROTO-SPHERA TS-3 ii) SP Þ the plasma disk near the electrodes is absent in TS-3 PROTO-SPHERA Workshop Frascati, 18-19/03/2002 19 Associazione Euratom-ENEA sulla Fusione TS-3 (Ip=50 kA, Ie=40 kA, b≈12%, A≈1.7) toroidal number n=1, poloidal harmonics mÎ [-5,15] y max x ( y T )=0 y max x ( y T )≠0 Stable oscillatory motions on resonant q surfaces PROTO-SPHERA Workshop Frascati, 18-19/03/2002 20 Associazione Euratom-ENEA sulla Fusione TS-3 (Ip=100 kA, Ie=40 kA, b≈14%, A≈1.5) toroidal number n=1, poloidal harmonics mÎ [-5,15] y max x ( y T )=0 y max x ( y T )≠0 Kink of the SP, Tilt of the ST PROTO-SPHERA Workshop Frascati, 18-19/03/2002 21 Associazione Euratom-ENEA sulla Fusione SUMMARY for PROTO-SPHERA 1) With moderate b (≤20%) in the ST, the Pinch dominates the stability: compression A≥1.3, Ip/Ie≤2 2) Degenerate X-point on symmetry axis and "plasma disk" improve stability: in TS-3 compression A≈1.6, Ip/Ie≈1 y 3) If x ( y max T )=0 in presence of degenerate X-point at R=0 is imposed, compression A≈1.2, Ip/Ie≈4 (with b≈10% in the ST) are obtainable Þ upper/lower conducting shells close-fitting the pinch plasma (limiters) 4) Pressure profile shape (relatively peaked) not changed in the analysis Þ CKF results will show that flat pressure profiles improve stability PROTO-SPHERA Workshop Frascati, 18-19/03/2002 22 Associazione Euratom-ENEA sulla Fusione PROTO-SPHERA Workshop Frascati, 18-19/03/2002 23 Associazione Euratom-ENEA sulla Fusione Stability of the Chandrasekhar-Kendall-Furth Configurations r r Unrelaxed ( Ñm ≠0, Ñp≠0) CKF Equilibria of the plasma boundary & the full toroidal current of the configuration r r Equilibrium profiles such that Ñp & Ñm are concentrated in a region 0<y≤yc, where yc=yx+[1- a •(yaxis-yx)] with 0<a≤1 Fixed pressure jump between plasma edge and ST magnetic axis (paxis/pedge=5), variable jump of m between edge and axis ST Dm controls the ratio IST/Ie (µ q 95 ) yc controls the value of qST 0 r r 2 B.C.Þ m=m0 j · B B =const. only at the edge Analysis performed keeping fixed the shape PROTO-SPHERA Workshop Two bST values considered: 1/3 & 1 Investigated toroidal numbers n=1,2,3 (n=0 vertical stability not yet investigated) Frascati, 18-19/03/2002 24 Associazione Euratom-ENEA sulla Fusione • Boozer coordinates (yT,q,f) joined at interfaces Inside Tori: xy = å x l (y T ) sin (m lq - n l f ) l h = å hl (y T ) cos(ml q - n l f ) l m = å m l (y T ) cos(m lq - nl f ) l Surrounding coupled mode: xy = å x l (y T ) sin (3m l q - n l f) l h = å hl (y T ) cos(3m l q - nl f) l m = å m l (y T ) cos(3m l q - n l f) l Surrounding Internal mode: xy = å x l (y T ) sin (m lq - n l f ) l h = å hl (y T ) cos(ml q - n l f ) l m = å m l (y T ) cos(m lq - nl f ) l PROTO-SPHERA Workshop Frascati, 18-19/03/2002 25 Associazione Euratom-ENEA sulla Fusione • The problem to avoid divergences at the symmetry axis (R=0) is the same as in PROTO-SPHERA • The solution is still a change of variable, but, for the CKF ideal MHD analysis, the choice of the new variables has been improved: xy x˜ = N R ˜=h h B • In fact the regularity of the perturbed magnetic energy at the symmetry axis suggest to use N=2 both for dWp and dWv • The representation adopted for PROTO-SPHERA is equivalent to the r r choice N=1 (since Ñy T ® 0 like Ñy T » R on symmetry axis), so there are some evidences that the results obtained for PROTO-SPHERA could be pessimistic PROTO-SPHERA Workshop Frascati, 18-19/03/2002 26 Associazione Euratom-ENEA sulla Fusione Ideal MHD Stability Results (wall at ∞) for CKF: b =1 PROTO-SPHERA Workshop Frascati, 18-19/03/2002 27 Associazione Euratom-ENEA sulla Fusione Ideal MHD Stability Results (wall at ∞) for CKF: b =1/3 PROTO-SPHERA Workshop Frascati, 18-19/03/2002 28 Associazione Euratom-ENEA sulla Fusione Stability behaviour Vs. q0 at bST=1, IST/Ie=3 (q95~2.8) Stable Motion Stable Motion Resonance on SP Resonance on ST PROTO-SPHERA Workshop Stable Motion Resonance on Sec. Tori Frascati, 18-19/03/2002 29 Associazione Euratom-ENEA sulla Fusione Stability behaviour Vs. q0 at bST=1, IST/Ie=5 (q95~2.2) Unstable Motion Global mode on SP Stable Motion Resonance on ST PROTO-SPHERA Workshop Unstable Motion Global mode on ST Frascati, 18-19/03/2002 30 Associazione Euratom-ENEA sulla Fusione Stability behaviour at bST=1/3, low IST/Ie Unstable Motion Internal Global mode on SP PROTO-SPHERA Workshop Unstable Motion Internal Global mode on SP Frascati, 18-19/03/2002 31 Associazione Euratom-ENEA sulla Fusione Conclusions for the CKF Ideal MHD Stability • CKF configuration shows large stability region at unitary b even without close fitting walls Þ the surrounding "spheromak" plasma has a strong stabilizing effect on the ST • With bST=1 only flat pressure profiles ( qST ~1) are allowed if IST/Ie>4; 0 ST if 1.5< IST/Ie<4 (i.e. 2.7<q ST 95 <4) even peaked pressure profiles (high q 0 ) show stability • With bST =1/3 the region showing stability with peaked pressure profiles is extended to 1.2< IST/Ie <5.5 (i.e. 2<q ST 95 <5) and the stability region with flat pressure profiles is enlarged • The stability region found for the CKF configurations strongly supports the aim of the PROTO-SPHERA experiment: 2< IST/Ie<4 , PROTO-SPHERA Workshop q ST 95 ~2.8 , bST ~20% Frascati, 18-19/03/2002
Documenti analoghi
Motivazione Tecnica della Trattativa Privata per la
(MULTI-PINCH/PROTO-SPHERA), da realizzare a Frascati a partire dalla camera da vuoto
dell’esperimento inglese START, gia’ trasferito da Culham a Frascati.
La finalita’ di MULTI-PINCH/PROTO-SPHERA e...