Velocity Change Optimization
Transcript
Velocity Change Optimization
Homework ROCKET PROPULSION Velocity Change Optimization in Multistage Rockets Consider the optimization of a multistage rocket for minimum initial mass and given velocity change and payload mass. Show that the optimized velocity change for each stage are expressed by: ! v j = "c j ln #j 1 " ! v kc j where k is a solution of: ! v = " $ c j ln j #j 1 " ! v kc j Consider a two-stage rocket with: !v = 8500 m/s (ascent to LEO) and: Isp1 = c1 g = Isp2 = c2 g = !1 = ! 2 = ! = 340 s 450 s 0.13 for the 1st and 2nd stage, respectively. Determine: 1) the optimized values of the stage velocity changes; 2) the optimized value of the payload ratio. Solve the same problem with the same Δv but (reverse order of the two propellants): Isp1 = c1 g = 450 s Isp2 = c2 g = 340 s Compare with previous results. Which solution is better and why? Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa – Page 1 Homework Solution – Velocity Change Optimization in Multistage Rockets From the notes: ! vi = "ci ln %&# i + $i (1 " # i ) '( ) $i = e " ! vi ci " # i 1 " #i Therefore we have to maximize: e # $ vi ci # % i ! = " !i = " 1 # %i i i for given total velocity change: ! v = " ! vi # 1$ " i i ! vi =0 !v Since: ln ! = % ln i e " # vi ci " $ i 1 " $i is maximum at the same location where λ is maximum, consider the augmented function: % e " ! vi ci " # i !v ( F ( ! vi ) = $ ln " k '1 " $ i * & 1 " #i i i !v ) where k is a nondimensional Lagrangian multiplier. Differentiating w.r.t. Δvj : # "v c e i j cj !F k = # # "v j cj + =0 e # $ j "v ! "v j ( ) obtain: e ! "v j cj = #j 1 ! " v kc j $ " v j = !c j ln #j 1 ! " v kc j where k is solution of: ! v = " $ c j ln i #j 1 " ! v kc j For the given two-stage rocket: g= c1 = gIsp1 = c2 = gIsp2 = and: ! v = "c1 ln #1 #2 " c2 ln 1 " ! v kc1 1 " ! v kc2 or, in nondimensional form: f (k ) = 1 + c1 "1 c "2 ln + 2 ln =0 ! v 1 # ! v kc1 ! v 1 # ! v kc2 where f(k) is not defined for: Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa – Page 2 9.81 m/s2 3335.4 m/s 4414.5 m/s Homework # "v "v & 0 < k < k! = max $ , ' = % c1 c2 ( 2.55 and: lim f ( k ) = 1 + k! ±" c1 c ln$ 1 + 2 ln$ 2 < 0 #v #v lim f ( k ) = "# k!0 " lim f ( k ) = +# k!k"+ as shown in the figure: Therefore let: k = 3.6483045 and solve for: f (k ) = 1 + c1 "1 c "2 ln + 2 ln = -1.824E-07 ! v 1 # ! v kc1 ! v 1 # ! v kc2 Compute the stage velocity changes and payload ratios: #1 = 1 " ! v kc1 2806 m/s #2 = 1 " ! v kc2 5694 m/s ! v1 = "c1 ln ! v2 = "c2 ln !1 = e " # v1 c1 " $ 1 = 1 " $1 0.346 !2 = e " # v2 c2 " $ 2 = 1" $2 0.167 ! = !1!2 = 0.0578185 Compute the propellant mass ratios: mP1 = 1 ! e ! " v1 m0 c1 = Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa – Page 3 0.569 Homework mP2 = 1 ! e ! " v2 m1 = 0.725 mP2 m = !1 P2 = m0 m1 0.251 c2 where: m1 = !1 m0 and therefore: Notice that this configuration corresponds to a 1st stage realtively small (high payload ratio, small velocity change) and a bigger 2nd stage (small payload ratio, high velocity change. Reversing the order in the use of the two propellants would not change the overall payload ratio, but would swap the velocity changes and payload ratios of each stage, thereby leading to a bigger 1st stage and a lighter 2nd stage. Hence: c1 = 4414.5 m/s c2 = 3335.4 m/s and: #1 = 1 " ! v kc1 5694 m/s #2 = 1 " ! v kc2 2806 m/s ! v1 = "c1 ln ! v2 = "c2 ln !1 = e " # v1 c1 " $ 1 = 1 " $1 0.167 !2 = e " # v2 c2 " $ 2 = 1" $2 0.346 ! = !1!2 = 0.0578 Compute the propellant mass ratios: mP1 = 1 ! e ! " v1 m0 mP2 = 1 ! e ! " v2 m1 c1 = 0.725 c2 = 0.569 where: m1 = !1 m0 and therefore: Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa – Page 4 Homework mP2 m = !1 P2 = m0 m1 0.095 The second configuration is clearly less cost-effective, since it uses larger quantities of high specific impulse propellant. Luca d’Agostino, Dipartimento di Ingegneria Aerospaziale, Università di Pisa – Page 5
Documenti analoghi
Rocket Propulsion Fundamentals
For missions with high propellant masses ( mP comparable to m0 ):
– large tank and engine masses need to be accelerated
– final thrust and acceleration become excessive
Hence staging can be advanta...