Il Microscopio Elettronico in Trasmissione: principi di
Transcript
Il Microscopio Elettronico in Trasmissione: principi di
Il Microscopio Elettronico in Trasmissione: principi di f funzionamento Scuola CIGS preparazione campioni TEM 18-19 Maggio 2009 Stefano Frabboni Dipartimento Di ti t di Fi Fisica i Università di Modena e Reggio E. e CNR-INFM-S3 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 1 Electron Fundamental constants De Broglie wavelength λnon rel = λ rel h = p 1.22 E (eV ) h h = = p ⎡ ⎛ eE ⎢2m0 eE ⎜⎜1 + 2 ⎝ 2 m0 c ⎣⎢ ⎞⎤ ⎟⎥ ⎟⎥ ⎠⎦ ‐1.602 x10‐19C 9.109 x10‐31kg 511 keV 34 J s 6.626 x10‐34 4.14 x10‐15eV s 2.998 x108m/s e m0 m0 c 2 h nm 1/ 2 c E (kV) λnon rel λ rel (pm) (pm) γ m/m0 v (108m/s) 100 3.86 3.70 1.196 1.644 200 2.73 2.51 1.391 2.086 300 2.23 1.97 1.587 2.330 Physics Department University of Modena and Reggio Emilia 8 anni fa oggi: 0.07nm!! Physics Department University of Modena and Reggio Emilia 2 Analisi strutturali e composizionali con AEM/HREM Riconoscimento di una struttura nota • Composizione chimica (EDX and EELS)) • Dimensioni e simmetria cella unitaria da confrontare con data-base di strutture note ((D&I)) • Funzione radiale negli amorfi (D, EXELFS) Determinazione del tipo di stato condensato (Diffrazioni & Immagini) • amorfo • policristallo • monocristallo Caratterizzazione di modifiche a strutture note analisi difetti cristallografici • Campi di deformazione ⇒ strain ( D& I ) • Misure di disordine statico ((D)) • Studio difetti cristallografici (D,I) (HREM+Image Simulation) • Mappe elementali (EDXS, EELS) Determinazione di una nuova struttura • Composizione chimica (EDX, EELS)) • Dimensioni e simmetria cella unitaria (D& I) • Posizioni atomiche nella cella unitaria (D& I) • Studio del legame chimico (D & ELNES) Physics Department University of Modena and Reggio Emilia Outline (1) • Un po’ di ottica: – lente sottile, – teoria di Abbe – aberrazioni – Risoluzione: point-spread-function e funzione di trasferimento: • TEM – elementi elettro-ottici del TEM • Sorgenti, lenti magnetiche, spettrometro-filtro energetico (Gatan Imaging Filter) General Reference D.B.Williams and C. Barry Carter “Transmission Electron Microscopy” Plenum Press 1996 Physics Department University of Modena and Reggio Emilia 3 Outline (2) •TEM-interazione elettrone campione •Interazione elastica: •modo diffrazione : •a fascio parallelo (SAD) e a fascio convergente (CBED) •CBED CBED filtrato filt t in i energia i (EFCBED) •modo immagine. •Contrasto di diffrazione o di ampiezza •Contrasto di fase o alta risoluzione •risoluzione spaziale e danno da radiazione:criterio di Rose. • Interazione anelastica: •spettri di perdita di energia (EELS) •immagini e diffrazioni spettroscopiche (EFTEM) •Microanalisi a raggi X (EDX) Physics Department University of Modena and Reggio Emilia Lente sottile Legge di Gauss Physics Department University of Modena and Reggio Emilia 4 Lente sottile Legge di Gauss Physics Department University of Modena and Reggio Emilia Convergent thin lens: the focal plane Physics Department University of Modena and Reggio Emilia 5 Teoria di ABBE Physics Department University of Modena and Reggio Emilia MainAberrations Aperture (diffraction)aberration Spherical aberration Chromatic aberration ρ A = 0.61 λ βA ρ s = C sβ 3 ρ c = C c (ΔE / E)β Physics Department University of Modena and Reggio Emilia 6 Sperical aberration correction ρ s = C sβ 3 Physics Department University of Modena and Reggio Emilia Cromatic aberration n(λ) leads to different focal length for different wavelength ρ c = C c (ΔE / E)β Correction: Acromatic doublet Physics Department University of Modena and Reggio Emilia 7 Il limite !! Physics Department University of Modena and Reggio Emilia Teoria di ABBE Physics Department University of Modena and Reggio Emilia 8 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 9 Thermoionic emission LaB6 Figura 4 - Caratteristica del cannone elettronico from Williams, Carter “Transmission electron microscopy” Physics Department University of Modena and Reggio Emilia Axial Brightness of the electron source Ω=2π(1-cosθ) B = J/Ω [Amp/m2sterad] Ιt pprovides the current densityy in the solid angle g 2 that, for small aperture angles is πθ , so that: Β= J/π θ2 =4 i/ π2 dg2 θ2 Reduced Brightness: Br = B/V conserved along the electron column This means that current density and the apertures cannot be changed independently but are related by the gun brightness Physics Department University of Modena and Reggio Emilia 10 from Williams, Carter “Transmission electron microscopy” Schottky Emission 1/x x The lowering of the potential barrier is ΔΦ ~ 0.4eV for V ~ 106V/cm Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 11 L.Reimer “Transmission Electron Microscopy” Springer (1989) Physics Department University of Modena and Reggio Emilia Magnetic deflection (focusing) F=qvxB v⊥B⇒ r= mv v = qB ωc Hp :: v // B ⇒ no deflection r v ^ B ρ= z Helical trajectories : Lz = ^ ; B = −Bz z v z = v cos θ θ O ^ v = vr r+ v z z m vx m v = sen θ qB qB Lz = vzT= vz2π/ωc 2π mvv 2π mvv ⎛ 1 2 ⎞ ⎛ 1 2 ⎞ cos θ = ⎜1 − θ + ....⎟ = L 0 ⎜1 − θ + .... ⎟ qB qB ⎝ 2 ⎠ ⎝ 2 ⎠ Δz = L0 2 L θ ⇒ ρ = Δ z tan θ ≈ 0 θ 3 ≈ CSθ 3 2 2 Spherical aberration Physics Department University of Modena and Reggio Emilia 12 Physics Department University of Modena and Reggio Emilia Round Magnetic lens η=e/m Physics Department University of Modena and Reggio Emilia 13 Resolution ρ = [ρ 2A + ρs2 + ρ c2 ]1/ 2 For an electro-optical system limited by the spherical aberration ⎛ λ ⎝ Cs β optp = 0.77⎜⎜ ⎞ ⎟⎟ ⎠ 1/ 4 ~6mrad at 200 keV, Cs=0.5mm ρ min = 0.91(C s λ3 ) 1/ 4 ~ 1 nm Physics Department University of Modena and Reggio Emilia 0.1nm resolution? λ 200 keV = 0.0025nm d = 0.1nm ⎛ λ βopt = 0.77⎜⎜ ⎝ Cs C s = 0.5 mm θ~ 1/ 4 ⎞ ⎟ ⎟ ⎠ λ d ~ 25mrad d ~ 4 β opt βopt = 6.5 mrad ρ min = 0.91(C s λ3 ) 1/ 4 ~ 1 nm Cs compensation TEOREMA DI SCHERZER!! Defocused Many Beam Interference (Coherent) image at Scherzer (res:0.2nm) Many Beam Interference image with Sextupole Cs correctors (res:0.07nm) Electron holography (res:0.1nm) Lensless Imaging (Electron Phtychography) (res:0.07nm) Physics Department University of Modena and Reggio Emilia 14 Diffraction Image mode from Williams, Carter “Transmission electron microscopy” 10 nm Physics Department University of Modena and Reggio Emilia Detector: CCD camera Linear Dyn range 104 counts Number of pixels Pixel size 210x210-211x211 25x25micron2 PSF h(i,j) (f (from MTF) 2-5 pixels DQE [SNRout/SNRin]2 ~0.8 (100-1000)e/pix Gain (g)=(<I>)/<Ne>: 2 I raw (i, j ) = g ⋅ h(i, j ) ⊗ I 0 (i, j ) + B (i, j ) I (i, j ) = I raw (i, j ) − I dark (i, j ) I gain (i, j ) − I darkref (i, j ) Physics Department University of Modena and Reggio Emilia 15 From : R.F. Egerton, “Electron Energy Loss spectroscopy in the electron microscope” The spectrometer •Cromatic image in the x,z plane •Acromatic image in the y,z plane r= mv eB Physics Department University of Modena and Reggio Emilia GIF 200 Q1, Q2: focus of the spectrum on the slit plane Q3, Q4: Preject the image screeen on the CCD 15x S1‐S5: Sextupole lenses correct for second order aberrations and geometric distortion Q5, Q6: project the slit plane on the CCD from Williams, Carter “Transmission electron microscopy” Physics Department University of Modena and Reggio Emilia 16 L.Reimer “Transmission Electron Microscopy” Springer (1989) 8 anni fa oggi: 0.07nm!! Physics Department University of Modena and Reggio Emilia Tecniche di Analisi del TEM Scuola CIGS preparazione campioni TEM 18-19 Maggio 2009 Stefano Frabboni Dipartimento Di ti t di Fi Fisica i Università di Modena e Reggio E. e CNR-INFM-S3 Physics Department University of Modena and Reggio Emilia 17 Analisi strutturali e composizionali con AEM/HREM Riconoscimento di una struttura nota • Composizione chimica (EDX and EELS)) • Dimensioni e simmetria cella unitaria da confrontare con data-base di strutture note ((D&I)) • Funzione radiale negli amorfi (D, EXELFS) Determinazione del tipo di stato condensato (Diffrazioni & Immagini) • amorfo • policristallo • monocristallo Caratterizzazione di modifiche a strutture note analisi difetti cristallografici • Campi di deformazione ⇒ strain ( D& I ) • Misure di disordine statico ((D)) • Studio difetti cristallografici (D,I) (HREM+Image Simulation) • Mappe elementali (EDXS, EELS) Determinazione di una nuova struttura • Composizione chimica (EDX, EELS)) • Dimensioni e simmetria cella unitaria (D& I) • Posizioni atomiche nella cella unitaria (D& I) • Studio del legame chimico (D & ELNES) Physics Department University of Modena and Reggio Emilia Outline (2) •TEM-interazione elettrone campione •Interazione elastica: •modo diffrazione : •a fascio parallelo (SAD) e a fascio convergente (CBED) •CBED CBED filtrato filt t in i energia i (EFCBED) •modo immagine. •Contrasto di diffrazione o di ampiezza •Contrasto di fase o alta risoluzione •risoluzione spaziale e danno da radiazione criterio di Rose. • Interazione anelastica: •spettri di perdita di energia (EELS) •immagini e diffrazioni spettroscopiche (EFTEM) •Microanalisi a raggi X (EDX) Physics Department University of Modena and Reggio Emilia 18 CTEM HREM SAED CBED Electron-specimen interactions Backscatterd Electrons Incident Electron Beam (200 kV) Auger Electrons Visible light Characteristic X-ray EELS EFTEM Secondary Electrons thickness~ 100nm EDXS Bremsstrahlung X-ray Elastically Scattered Electrons Direct beam Inelastically Scattered Electrons Physics Department University of Modena and Reggio Emilia PERCHE’ ASSOTTIGLIARE IL CAMPIONE? Physics Department University of Modena and Reggio Emilia 19 Effetto dello spessore del campione sulla distribuzione energetica del fascio trasmesso t~200nm t~40nm t~400nm t>1000nm Physics Department University of Modena and Reggio Emilia (Transmitted) Electron-specimen interactions Physics Department University of Modena and Reggio Emilia 20 Small angle Elastic Scattering: (e-,atomic V(r)) Wentzel potential First approx few% accuracy V (r ) = eZ 4πε 0 r exp[− r / R ]; R = a H Z −1 / 3 ; a H = 0.0529nm : Bohr radius Atomic scattering factor: ∞ 2 m e e 2 (Z − f X ( q ) ) 2πme f e (q) = V (r ) exp(− 2πiq ⋅ r )dr = 2 ∫ h2 q2 h −∞ n f e (q) = ∑ A j exp(− B j q 2 ), A j , B j fitting parameters (Peng et al.1996) j =1 f X (q ) = ∫ ρ (r ) exp[−2πiq ⋅ r ]dr = ∫ ρ (r ) exp(−2πiq ⋅ r ) K0 K0 Ks 2θ f(q) (Å) q q= ρ(r)= electronic charge density silicon 2 sin ϑ λ Physics Department -1 University of Modena and Reggio Emilia q/2 (Å ) Elastic scattering from assembly of atoms:diffraction f(q) (Å) f (q) = 2 m e e 2 (Z − f X ( q ) ) h2 s2 Scattered crystal Intensity I(θ) q/2=sin( θ)/λ (Å-1) poly Scattered Intensity amorphous I(θ) Physics Department University of Modena and Reggio Emilia 21 Single elastic scattering approximation Physics Department University of Modena and Reggio Emilia Working example : Atomic scattering vs. diffraction from R. Neder and T. Proffen (http://www.kri.physik.uni-muenchen.de/crystal/teaching/) Physics Department University of Modena and Reggio Emilia 22 Reciprocal Lattice from R. Neder and T. Proffen (http://www.kri.physik.uni-muenchen.de/crystal/teaching/) Physics Department University of Modena and Reggio Emilia Original structure: direct lattice The structure chosen for this set of examples is an artificial structure in the space group Pnnn. The lattice constants have been chosen as 7.5, 10 and 12.5 Å. Simple projection of the structure along [001] from R. Neder and T. Proffen (http://www.kri.physik.uni-muenchen.de/crystal/teaching /) Physics Department University of Modena and Reggio Emilia 23 Original structure:Fourier transform and reciprocal lattice from R. Neder and T. Proffen (http://www.kri .physik.uniphysik unimuenchen.de/cr ystal/teaching/ ) Physics Department University of Modena and Reggio Emilia Modification: Shift atom Modification: Shift atom Fourier Transform and Reciprocal lattice from R. Neder and T. Proffen (http://www.kri.physik.uni-muenchen.de/crystal/teaching /) Physics Department University of Modena and Reggio Emilia 24 Modification: Shift atom from R. Neder and T. Proffen (http://www.kri.physik.unimuuenchen.de/crystal/teaching/) 1. The intensity of the Bragg reflections is fully determined by the Fourier transform of the unit cell. 2. The positions of the Bragg reflections remain invariant to changes of within the unit cell. 3. The intensity of the Bragg reflections are changed if the atoms are moved to new sites within the unit cell. This sensitivity forms the basis Physics Department for successful structure refinements. University of Modena and Reggio Emilia Modification: Expanding the lattice Close inspection p of the Fourier transforms shows that the corresponding maxima of the red curve are slightly higher than those of the blue curve. This increase is due to the fact that the maxima have shifted to smaller reciprocal space vectors. Closer to the reciprocal space origin the scattering factors of the atoms are larger and thus the calculated intensity increases. Physics Department University of Modena and Reggio Emilia 25 Courtesy of R. Balboni , CNR IMM Bo Physics Department University of Modena and Reggio Emilia Crystalline sample: The structure factor Fg V(r): crystal potential B(r): atomic/molecular base: potential veriation in the unit cell L(r): Bravais lattice V (r) = B(r ) ⊗ L(r ) where +∞ L(r) = ∑ u ,v ,wδ (r − n1a + n2 b + n31c), B(r ) = ∑ j B j (r − rj ) −∞ a b, a, b c =lattice parameters The Fourier trasform of V(r): A(q ) = FT[V(r)]= FT[B(r)] • FT[L(r)] = FT[B(r)] • L-1(g) q: reciprocal space vector, L-1(g) : reciprocal lattice, g: reciprocal lattice vector +∞ L−1 (g) = ∑ h,k ,l δ (q − g ) −∞ A(q ) = FT[ B(r )] • L-1 (g) = F g Ω0 = 1 Ω0 ∑f j con g = ha * + kb * + lc* 1 1 Fg F (q) • L-1 (g) = F (q) = Ω0 Ω0 Ω0 g [ (g) exp − 2πig • r j ] j Ω 0 = volume of the unit cell Physics Department University of Modena and Reggio Emilia 26 TEM sample V(r ) = [B(r ) ⊗ L(r)] ⋅ S(r ) A(q ) = (FT[B(r )] • L-1 (g)) ⊗ FT[S(r)] A(s) ∝ F sin(πts) , s = deviation Bragg condition, t = thickness Ω 0 πs g Fg2 ⎛ sin(πts) ⎞ 2 I g (s, t ) = 2 2 ⎜ ⎟ k Ω 0 ⎝ πs ⎠ Physics Department University of Modena and Reggio Emilia Diffraction Image mode 10 nm Physics Department University of Modena and Reggio Emilia 27 CTEM and Selected Area Electron Diffraction (SAED) 10 nm 2d hkl sin(θB ) = λ transmitted beam D hkl L 2 ⎡ ⎤ λL 3⎛ D ⎞ = ⎢1 + ⎜ hkl ⎟ + .....⎥ D hkl ⎢⎣ 8 ⎝ L ⎠ ⎥⎦ 2 sin(θB ) ≈ 2 tan(θB ) ≈ 2θB ≈ d hkl Δd hkl ≈ 0.001 − 0.01 d hkl Physics Department University of Modena and Reggio Emilia I hkl = js 2π 2 m 2 e 2 h 4 2 KNVcp hkl Vg λ2 d hkl js densità di corrente, K: numero di cristalli con N celle unitarie Ve volume di una cella con N celle unitarie, V volume di una cella unitaria, phkl: molteplicità del piano hkl, Vg: fattore di struttura, λ lunghezza d’onda, dhkl spaziatura dei piani. Physics Department University of Modena and Reggio Emilia 28 Multiple beam effetcs: Conventional diffraction vs. Convergent Beam Diffraction Physics Department University of Modena and Reggio Emilia MgO/Fe/MgO Cross section (image mode) 10nm 10nm Misura dello spessore dei film MgO (001) Fe (001) MgO (001) Qualità delle interfaccia Au MgO ΔtFe~ 9nm ΔtMgO~ 12nm 50nm Film Fe Film MgO Physics Department University of Modena and Reggio Emilia 29 MgO/Fe/MgO Cross section (diffrazione) MgO Fe MgO Film superficiale di MgO: scarsa qualità cristallina, presenza di MgO policristallino Film Fe: presenza di due grani (001), (101) Substrato MgO: ottima qualità cristallina, MgO perfettamente orientato secondo l’asse di zona (001) Physics Department University of Modena and Reggio Emilia SiC/GaN heterostructures: polarity determination g=(0002) GaN [0001] convergent beam SiC Physics Department University of Modena and Reggio Emilia 30 Many Beams interaction Physics Department University of Modena and Reggio Emilia Polarity in Compound Semiconductors EXPERIMENT N N Ga Ga [0001] SIMULATION [0001] [0001] SIMULATION [0001] [0001] Physics Department University of Modena and Reggio Emilia 31 CBED patterns → analysis of high angle diffracted beams g3 2θ g2 Ewald sphere construction HOLZ LINES g1 g2 g1 Physics Department University of Modena and Reggio Emilia Symmetry and strain in Si/Si1-xGex/Si heterostructures 30 nm Physics Department University of Modena and Reggio Emilia 32 CBED STRAIN MEASUREMENTS electron probe High Order Laue Zones (HOLZ) lines their p position is very y sensitive to lattice parameter variations (strain) as: Δθ θ =− Δa ΔE 0 = a 2E0 unstrained silicon strained silicon (isotropic )10-3 Physics Department University of Modena and Reggio Emilia AUTOMATIC PROCEDURE Physics Department University of Modena and Reggio Emilia 33 Energy Filtered Diffraction, zero‐loss Physics Department University of Modena and Reggio Emilia Energy Filtered CBED Experimental pattern (Room temperature) Experimental pattern (energy filtered, EW=5 eV, Room temperature) Simulation (EMS software by P. Stadelmann (1987)) Physics Department University of Modena and Reggio Emilia 34 Zero loss filtering: dependence of HOLZ line pattern on energy window (EW) amplitude EELS spectrum pixels eV pixels eV Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 35 Quantitative Diffraction and bonding Physics Department University of Modena and Reggio Emilia MODO IMMAGINE Physics Department University of Modena and Reggio Emilia 36 The atom as a weak phase object V (r ) = eZ 4πε 0 r exp[− r / R ]; R = a H Z −1 / 3 ; a H = 0.0529nm : Bohr radius Lichte, Rep. Prog. Phys. 71 (2008) 016102 Physics Department University of Modena and Reggio Emilia Courtesy of A. Parisini, CNR IMM Bo Physics Department University of Modena and Reggio Emilia 37 Courtesy of A. Parisini, CNR IMM Bo PB: Come trasformare l’informazione contenuta nella fase Dell’onda trasmessa in Intensità osservabile? •Filtraggio spaziale •Piatto di fase Courtesy of A. Parisini, CNR IMM Bo Physics Department University of Modena and Reggio Emilia Filtraggio spaziale Physics Department University of Modena and Reggio Emilia 38 C T E M 10 nm Physics Department University of Modena and Reggio Emilia Low resolution (~1nm) imaging Introduction to Electron Microscopy and Microanalysis Vick Guo 1985 Physics Department University of Modena and Reggio Emilia 39 Amplitude contrast Si Ni C 10 nm hole Physics Department University of Modena and Reggio Emilia Amplitude contrast: BF, DF Fascio incidente Campione Lente Obiettivo Diaframma obiettivo 1° Immagine Bright Field Dark Field: Tilted Mode Introduction to Electron Microscopy and Microanalysis Vick Guo 1985 Physics Department University of Modena and Reggio Emilia 40 Resolution ρ = [ρ 2A + ρs2 + ρ c2 ]1/ 2 For an electro-optical system limited by the spherical aberration ⎛ λ ⎝ Cs β optp = 0.77⎜⎜ ⎞ ⎟⎟ ⎠ 1/ 4 ~6mrad at 200 keV, Cs=0.5mm ρ min = 0.91(C s λ3 ) 1/ 4 ~ 1 nm Physics Department University of Modena and Reggio Emilia 0.1nm resolution? λ 200 keV = 0.0025nm d = 0.1nm ⎛ λ βopt = 0.77⎜⎜ ⎝ Cs C s = 0.5 mm βopt = 6.5 mrad 1/ 4 ⎞ ⎟ ⎟ ⎠ θ~ λ d ~ 25mrad d ~ 4 β opt Cs compensation Defocused Many Beam Interference (Coherent) image at Scherzer (res:0.2nm) Many Beam Interference image with Sextupole Cs correctors (res:0.07nm) Electron holography (res:0.1nm) Lensless Imaging (Electron Phtychography) (res:0.07nm) Physics Department University of Modena and Reggio Emilia 41 Phase object and Zernike phase plate Physics Department University of Modena and Reggio Emilia Zernike phase plate g( x ) = e iΦ ( x ) ≈ 1 + iΦ ( x ) a meno di termini quadratici 2 1 + iΦ ( x ) = 1 + Φ 2 ( x ) ≈ 1 a meno di termini quadratici Ma se riesco a moltiplicare per i o la parte diffratta dall' oggetto Φ ( x ), o quella trasmessa si ha : 2 1 − Φ ( x ) = 1 − 2Φ ( x ) + Φ 2 ( x ) ≈ 1 − 2Φ ( x ) a meno di termini quadratici In the back focal plane of the objective lens : Fourier Transform g(u ) = F(g ( x )) = δ (u ) + iF(Φ ( x )) g ⊗ (u ) = δ (u ) + iiF(Φ ( x )) = (δ (u ) − F(Φ ( x ) ) F −1 (g ⊗ (u )) = 1 − Φ ( x ) 2 I = 1 − Φ ( x )) = (1 - 2Φ ( x ) + Φ 2 ( x )) ≈ 1 − 2Φ ( x ) Physics Department University of Modena and Reggio Emilia 42 Physics Department University of Modena and Reggio Emilia Aberrations and phase shifts Physics Department University of Modena and Reggio Emilia 43 Physics Department University of Modena and Reggio Emilia Courtesy of A. Parisini, CNR IMM Bo Physics Department University of Modena and Reggio Emilia 44 Formazione dell’immagine in contrasto di fase: Teoria di Abbe f ( x, y ) = exp[−iσV p ( x, y )] ≈ 1 − iσV p ( x, y ) H R E M • e − iχ ( u , v ) • A ( u , v ) I( x, y) = 1 − 2σVpab ( x, y) Physics Department University of Modena and Reggio Emilia Example of phase transfer function sinχ λ3 1 ⎛1⎞ 1 χ ⎜ ⎟ = πC s 4 + πΔfλ 2 d d ⎝d ⎠ 2 Optimum defocus (Scherzer defocus )Δf : 1 Δ f = − 1 . 2 (λ C s )1 / 2 ~ 43 nm for optimum resolution Physics Department University of Modena and Reggio Emilia 45 Image simulation as a function of defocus, d, and thickness,t Silicon, [110] direction, Cs=0.5mm λ=0.0025nm White atoms Black atoms Physics Department University of Modena and Reggio Emilia High Resolution Experimental image [110]Si/amorphous Silicon interface Electron Microscopy Physics Department University of Modena and Reggio Emilia 46 Immagini HREM direttamente interpretabili (debole oggetto di fase) Au grain boundary [010] orientation InAsSb- InAs interface Physics Department University of Modena and Reggio Emilia Il campione: Criterio di risoluzione di Rose ρ2 = e(S/N)2 fDC2 Radiation Damage D : dose e : carica elettrone S/N : rapporto segnale rumore ≈ 5 f : efficienzadi raccolta≈ 1 C : contrasto (5%) risoluzione ρ = 0.1nm D = 16 C/cm2 risoluzione ρ = 0.5nm D = 0.16 C/cm2 Physics Department University of Modena and Reggio Emilia 47 Electron-specimen interactions (inelastic-transmitted:EELS) Physics Department University of Modena and Reggio Emilia Electron Energy Loss Spectroscopy Physics Department University of Modena and Reggio Emilia 48 Energy Resolution Energy resolution is limited by the probe-energy distribution and spectrometer resolution Measure as width of the zero-loss peak Probe energy resolution (depends on gun current) » W: 2-3 eV » LaB6: >1 eV » Warm FEG: 0.55-0.9 eV » Cold W FEG: 0.25-0.5 eV » Monochromated FEG: – 0.01 eV demonstrated – 0.1-0.3 eV typical use – Approximately Gaussian zero-loss peak Physics Department University of Modena and Reggio Emilia EELS in TEM/STEM • Analyze energies of electrons transmitted through the specimen • Advantages: – – – – – – • Spatial resolution in fixed beamTEM ~ d, the electron beam size Detectability ~ 10x better than EDS Any solid Qualitative analysis of any element of Z > 1 Quantitative analysis by inner-shell ionization edges of elements Rich signal includes chemical information, etc. Difficulties: – – – Need very thin specimen: t < 40 nm Intensity weak for energy losses ΔE > 300 eV L- and M- edges not very obvious for some elements from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Physics Department University of Modena and Reggio Emilia 49 Three Spectral Regions • Zero-loss peak – FWHM:energy resolution – Very intense • Low-loss region – 0-50 eV loss – Plasmon losses – Inter/intra band transition • Inner-shell ionizations – 30 eV loss and higher – Microanalysis – Very low intensity from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 from Williams and Carter, TransmissionPhysics ElectronDepartment Microscopy, Springer, 1996 University of Modena and Reggio Emilia The Two EELS Modes • Image Mode (image on the viewing screen) – Spatial Selection • Position analysis area on optic axis, lift screen • Area selected is effective aperture size demagnified back to the specimen plane • Spatial resolution poor (10-30 nm) • Diffraction Mode (diffraction on the viewing screen) – Spatial Selection • Select area with focused beam • Area selected is function of beam size and beam spreading – – < 1 nm in FEG STEM at 0.5 nA ~ 10 nm in W electron gun at 0.5 nA • Best for high spatial resolution microanalysis Physics Department University of Modena and Reggio Emilia 50 How to optimize your EELS experiments by adjusting the collection angle of your spectrometer Definition of α and β in a (S)TEM. α is called the convergence semi-angle and is determined by the microscope’s settings, especially the condenser lens and aperture. The α angles corresponding to the different configuration of your TEM should be provided by the TEM manufacturer or measured using a known diffraction pattern (cf. Fig.3.) β is called the collection semi-angle and is determined by the objective aperture, the spectrometer entrance aperture, the camera length and the mechanical specification of the instrument. (This article will explain in detail how to measure β for different configurations). Physics Department University of Modena and Reggio Emilia Measure of the collection semi-angle β Diffraction (or STEM-EELS) mode β=(Radius of the spectrometer aperture) / (Camera length × Geometric factor) The “diffraction pattern” method. (only possible with GIFs) Using the desired camera length (or choosing the “EELS” option of your microscope), observe a diffraction pattern of a known structure on your GIF camera. Looking at the shadow of the entrance aperture, the collection angle angle, β, β can be determined using the known diffraction pattern as a reference to calibrate your image. Even α can be obtained by measuring the size of the diffraction spot as shown on Fig.3. Aperture GIF e angolo di accettanza 2β ( totale) a 8mm di C.L., 200keV Misurata da una SAD di Si 110 inserendo le aperture. 0 6 mm ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 5.5 mrad 0.6 mm 5 5 mrad 2mm‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 16‐18 mrad 3mm‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 24 mrad (estrapolazione) Physics Department University of Modena and Reggio Emilia 51 How does the collection angle affect my experiments? In EELS, the spectrometer measures the number of electrons that have lost a specific amount of energy. The excitation of atoms in the sample will result in characteristic edges in the measured spectrum. The intensity of those edges is directly proportional to the number of atoms present and the scattering cross section of the studied element. The cross section is a function type of edge and depends strongly on the scattering angle. It’s critical to have a collection angle large enough to collect an important fraction of the desired scattered signal. Moreover, because the cross section’s angular dependence varies significantly between elements, β can have a strong influence on the quantification calculation. An easy way to know how large the collection angle, β , should be for your experiment is to evaluate the characteristic angle for a particular energy-loss event, θE=Eedge/2E / 0, where h Eedge is the h transition edge d energy andd E0 is the energy of the incident electron beam. With a β ~ 3 θE, it’s usually possible to collect about half of the signal, which should be appropriate for most of applications. Physics Department University of Modena and Reggio Emilia Low‐Loss Region: Plasmons • Collective oscillations of weakly bound electrons (conduction, valence band) – Most prominent in free-electron metals – But also present in semiconducting materials • Analysis: – Energy loss sensitive to changes in freeelectron density – Microanalysis of Al and Mg alloys • Thickness measurements – Plasmon mean-free-path, λp ~100 nm – Multiple peaks for thick specimens from Egerton Physics Department University of Modena and Reggio Emilia 52 Plasmons: applications from Egerton Physics Department University of Modena and Reggio Emilia Thickness Measurements • Log ratio method ⎛I ⎞ = ln⎜ T ⎟ λ ⎝ Io ⎠ t λ is total mean free path for all scattering – IT is area under entire spectrum – Io is area under zero-loss – Subtract background g first for best accuracy Rough estimate of λ: λ ∼ 0.8Εο nm so for 100-keV electons λ is 80-120 80 120 nm various materials Very thin specimens: t = λp(Ip/Io) from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Physics Department University of Modena and Reggio Emilia 53 Inner‐Shell Ionization Losses • Inner-shell electron ejected by beam electron – We measure energy loss in beam electron after event • Ionization event occurs before emission of either x-ray or Auger electron emitted – Get EELS signal regardless • Can observe “edges” for all inner-shell electrons – K K-shell shell electron (1s) – L-shell electron (2s or L1) (2p or L2 , L3) from Spence, in High Resolution Electron Microscopy, Buseck et al. (eds.),Oxford, 1987 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 54 Edge Energy ‐ Edge Shape • K-edge – Ideal triangular “saw tooth” sitting on background • Intensity decreases beyond edge – Less chance of ionization above Ec since cross section decreases with increasing E c from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Physics Department University of Modena and Reggio Emilia L‐Series Edges and White Lines White lines • Each element has characteristic edge g energy gy • Sharp white lines are present when d-band unfilled from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Physics Department University of Modena and Reggio Emilia 55 Edge Fine Structure • ELNES - electron loss near edge structure – Sensitive to chemical bonding effects – To ~ 50 eV beyond edge • EXELFS - extended energy-loss fine structure – Analogous to EXAFS – Sensitive to atomic nearest neighbors – Located beyond 50 eV for several hundred eV from Williams and Carter, TransmissionPhysics ElectronDepartment Microscopy, Springer, 1996 University of Modena and Reggio Emilia from Garvie, Craven, and Brydson, American Mineralogist, 79, (1984) 411-425 Carbon ELNES Carbon K-edges of minerals containing the carbonate anion compared with three forms of pure carbon Physics Department University of Modena and Reggio Emilia 56 Tetrahedral vs. Octahedral Si L2,3 Al L2,3 Crysoberyl Rhodizite Calculation for Al octahedrally coordinated to O from Garvie, Craven, and Brydson (1984) from Brydson (1989) Physics Department University of Modena and Reggio Emilia Fe L2,3 Edge in Minerals • Chemical shift • Shape change Almandine Hedenbergite Hercynite Fe “orthoclase” Brownmillerite Andradite Van Aken and Liebscher, Phys Chem Minerals 29 (2002) 188-200 Physics Department University of Modena and Reggio Emilia 57 Oxidation State • L3/L2 ratiosa – Fe – FeO FeO – Fe3O4 – γ‐Fe2O3 – α‐Fe2O3 3.8±0.3 46 4.6 5.2 5.8 6.5 (depends on peak stripping method) • Chemical shiftb – Fe Fe –> FeO 1.4±0.2 FeO 1.4±0.2 eV from Colliex et al. (1991) a. b. Colliex et al., Phys. Rev. B 44 (1991) 11,402-11,411 Leapman et al. Phys. Rev. B 26 (1982) 614-635 Physics Department University of Modena and Reggio Emilia EELS Quantification • Single scattering in a very thin specimen assumed • For each element assume: PK = the th probability b bilit for f ionization i i ti σK = the ionization cross section N = number of atoms per unit area IK = PK IT ⎛ t ⎞ PK = Nσ K exp⎜ ⎟ ⎝ λK ⎠ IK ≈ Nσ K IT (very thin specimen, t ≈ 0) I N = K for a single element when IT is known σ K IT Not collecting all the electrons so we must use IK (β,Δ) and σ K (β,Δ) where σ K (β,Δ) = partial ionization cross - section See Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer, 1996 Physics Department University of Modena and Reggio Emilia 58 From :EELS Charles Lyman Lehigh University Bethlehem, PA EELS Quantification Procedure Collect spectrum with known collection angle β from a very thin specimen region NA = IA (β,Δ ) I A (β,Δ ) σ KB (β,Δ ) N or A = KB σ A (β,Δ Δ )IT N B IK (β,Δ Δ ) σ KA (β,Δ Δ) Calculate (Ib = A E-r over δ = 20-50 eV) and remove background under edge Extracted edge intensity Integrate edge intensity for a certain energy window Δ IA (β,Δ ) Determine sensitivitiy factor called the “partial ionization cross section” Low-loss intensity ~ IT IB (β,Δ ) Fitted background Courtesy J. Hunt Physics Department University of Modena and Reggio Emilia Microanalysis Example From : EELS Charles Lyman Lehigh University Bethlehem, PA Courtesy J. Hunt Physics Department University of Modena and Reggio Emilia 59 Specimen Thicknesss Requirement • Microanalysis requires a very thin specimen – Estimate by: y I p Io ≤ 1 10 – Estimate thickness using: t ≈ λp(Ip/Io) for very thin only – Assuming λp ~ 100 nm: t ~ 10 nm for microanalysis from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Department Physics University of Modena and Reggio Emilia If Plural Scattering Occurs… Deconvolute to get this For quantitation of the ionization edge we need a true single scattering distribution Plural scattering removed by a deconvolution procedure from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 Physics Department University of Modena and Reggio Emilia 60 Spatial Resolution • EELS not affected by beam spreading like XEDS – Only electrons within 2β are collected • Diffraction mode • TEM mode – Beam size governs spatial resolution – Selection apertures govern spatial resolution Lens aberrations will limit both • Delocalization – Ionization by a “nearby” fast electron EELS ionization loss spectra have been obtained from single columns of atoms Physics Department from Williams and Carter, Transmission Electron Microscopy, Springer, 1996 University of Modena and Reggio Emilia Spatial resolution of EELS: delocalization from Egerton Physics Department University of Modena and Reggio Emilia 61 Atomic Resolution EELS Analysis (S. Pennycook Group, ORNL) Atomic-resolution Z-contrast STEM image of CaTiO3 doped with La La M4,5 edges La M4,5 edges only observed in spectrum collected directly from bright spot in image: single-atom resolution M. Varela et al, Phys. Rev. Lett. 92 (2004) 095502 Physics Department University of Modena and Reggio Emilia Summary What Can We Get from EELS? • Microanalysis by ionization-loss edges – Light Li ht element l t analysis l i complements l t XES • Specimen thickness measurements – Complements XES when absorption correction needed • Bonding information from near-edge fine structure (ELNES) – Fingerprints of edge shape • Reveal metal oxides, sulfides, carbides, nitrides, etc. – Chemical shifts • L3/L2 ratio can reveal a change in oxidation state – Use known standards for comparison, e.g., Fe, FeO, Fe2O3, Fe304 • ……Interatomic distances from extended energy-loss fine structure (EXELFS) – Information similar to EXAFS, but from nano-sized region rather than the bulk Physics Department University of Modena and Reggio Emilia 62 EFTEM Physics Department University of Modena and Reggio Emilia Aberrazioni e risoluzione Aberrazione sferica ρ s = C sβ 3 Aberrazione di apertura ρ A = 0.61 λ βA 1/ 2 Aberrazione cromatica ⎡⎛ ΔV ⎞ 2 ⎛ ΔI ⎞ 2 ⎤ ρc = C c ⎢⎜ ⎟ + 4⎜ ⎟ ⎥ β A ⎝ I ⎠ ⎥⎦ ⎢⎣⎝ V ⎠ ρ = [ρ 2A + ρs2 + ρ c2 ]1/ 2 Per un sistema ottico limitato dalla aberrazione sferica: 1/ 4 ⎛ λ ⎞ βopt = 0.77⎜⎜ ⎟⎟ ⎝ Cs ⎠ ( ρmin = 0.91 Cs λ3 ) 1/ 4 Physics Department University of Modena and Reggio Emilia 63 Useful Analogy: BF TEM Physics Department University of Modena and Reggio Emilia Energy Filtered Images Physics Department University of Modena and Reggio Emilia 64 Energy-Filtered TEM (EFTEM) Element Maps - Not Spectrum Images Elemental Maps of a SiC/Si3N4 ceramic Short Acquisition Time (3 maps, 250K pixels) = 50s Carbon RGB composite Oxygen Nitrogen Courtesyy John Hunt,, Gatan Physics Department University of Modena and Reggio Emilia EFTEM detection limits • Typically 2-5% local atomic concentration of most elements – – • 1% is attainable for many elements in ideal samples 10% for difficult specimens that are thick or of rapidly varying thickness Sensitivity limited by: – – – – – Diffraction contrast Small number of background windows Signal-to-noise Thickness Artifacts • If you can see the edge in the spectrum, you can probably map it • EFTEM spectrum image can map lower concentrations than the 3-window method ( FEG and STEM!!!) – Better background fits because there are more fitting channels Courtesy John Hunt, Gatan Physics Department University of Modena and Reggio Emilia 65 EFTEM Elemental Mapping • Three-Window Method – Subtract edge background using two pre pre-edge edge images (dotted line) Courtesy John Hunt, Gatan Physics Department University of Modena and Reggio Emilia EFTEM Elemental Mapping: Example 1 Aluminum Titanium 6 layer metallization test structure 3 images each around: O K edge: Ti L23 edge: Al K edge: @ 532 eV @ 455 eV @ 1560 eV 1 µm Oxygen Superimpose three color layers to form RGB composite O Ti Al Courtesy John Hunt, Gatan Physics Department University of Modena and Reggio Emilia 66 EFTEM Elemental Mapping: Example 2 BF image N Ti O Al Si Unfiltered bright-field TEM image of semiconductor device structure and elemental maps from ionization-edge signals of N-K, Ti-L, O-K, Al-K, and Si-K. Color composite of all 5 elemental maps displayed on the left,showing the device construction. Courtesy John Hunt, Gatan Physics Department University of Modena and Reggio Emilia Spatial resolution of EFTEM: aberrations and delocalization d = Cc *β *ΔE/E Cc = chromatic aberration constant β = the acceptance angle of the objective aperture ΔE = range of energies contributing to the image Blurr will be especially p y large g for thick, high-Z g specimens. Reduce blurr by: Using a small energy window (ΔE) Select energy loss ΔE by changing the gun voltage (vary kV) Physics Department University of Modena and Reggio Emilia 67 MgO/Fe/MgO Cross section (image mode) 10nm Misura dello spessore dei film 10nm Qualità delle interfaccia MgO (001) Fe (001) MgO (001) Au MgO ΔtFe~ 9nm 50nm ΔtMgO g ~ 12nm Film F Fil Fe Film MgO Physics Department University of Modena and Reggio Emilia MgO/Fe/MgO MAPPE EELS mappa Fe Ok FeL3 FeL2 mappa O 40 eV view O ( K edge, 532 eV) view Fe ( L edge, 708 eV) Intensity (a.u.)) 40 eV 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 O Fe 60 70 80 90 100 110 Depth (nm) Physics Department University of Modena and Reggio Emilia 68 Thick sections Physics Department University of Modena and Reggio Emilia Thick sections Physics Department University of Modena and Reggio Emilia 69 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 70 EDXS •MMF 0.1% •Typical Energy resolution150 eV Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 71 From Zaluzec http://www.amc.anl.gov/Docs/ANL/AAEM/AAEMHome Page.html Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 72 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 73 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 74 Physics Department University of Modena and Reggio Emilia Check the crystallographyc orientation of your sample!!! Physics Department University of Modena and Reggio Emilia 75 Physics Department University of Modena and Reggio Emilia Physics Department University of Modena and Reggio Emilia 76 Physics Department University of Modena and Reggio Emilia Strategy for Analysis of Unknown Phases • Start with light microscopy, SEM, powder x-ray diffraction (XRD), the library – Straightforward interpretation (usually helps TEM analysis) – Less expensive – Far more time may be needed to prepare a suitable thin specimen • Use at least two analysis methods – EDS and CBED (powerful when used together) • • • • Determine the elements present (EDS) Determine the phases present (CBED) All electron transparent specimens Keep the ICDD PDF handy to identify d-values – EELS and HREM (structure images) • Determine the elements present (EELS) • Obtain d-values of the phases (HREM) • Only very thin specimens BUT : carefully prepare your TEM sample Physics Department University of Modena and Reggio Emilia 77 Thank you very much for attention! Physics Department University of Modena and Reggio Emilia 78
Documenti analoghi
Breve Full professor of Histology and Embryology in the Faculty of
Full professor of Histology and Embryology in the Faculty of Medicine and Surgery of the University of
Modena and Reggio Emilia . Visiting professor in 1984 at the Department of Anatomy of the Univ...