2009 Stresa SETHI - Politecnico di Torino
Transcript
2009 Stresa SETHI - Politecnico di Torino
STRESA – June 19, 2009 Environmental Success In Treatment Objectives - Best Practices In Sustainable Soil, Sediment, and Groundwater Remediation: An Industry and Regulatory Perspective Proven Methods for Successfully Engineered Introduction of Remediation Reagents in Aquifer Systems CARSICO Rajandrea Sethi, Antonio Di Molfetta, Alessandro Ferrero* DITAG – Politecnico di Torino, Carsico s.r.l.* 1 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Reagents Oxidants: Zerovalent iron (ZVI) Sodium dithionite Liquids (miscible, non miscible) Gases electron acceptors (i.e. Oxigen); electron donors (i.e. Hydrogen) Slurries (suspensions) Emulsions Others: Solids Biodegradation promoting compounds: Reductants: Permanganate; Fenton; Ozone; Sorbent material (i.e. activated carbon, zeolites) Carbonates Surfactants - cosolvents Amendants: mixtures. 2 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 1 Reactive zones vs Permeable reactive barriers Delivery of the reactant close to the source Emplacement of the PRB downstream the source to intercept the plume Hot spots (good characterization) Multiple/areal sources Can decrease the remediation time Remediation time is controlled by the rate of dissolution of the contaminant 3 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Reactive zones vs Permeable reactive barriers Oxidants Reductants: Zerovalent iron (ZVI) Reductants Micro & Nano ZVI Others: Sorbent material (i.e. activated carbon, zeolites) Carbonates Amendants Amendants 4 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 2 PRB Construction methods Excavation Methods: Unsopported excavation; Supported excavation: □ Trench boxes □ Sheet piling Continuous Trenching Biopolymer Trenching 5 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Biopolymer trenching A biopolymer (CMC, guar) is used to support the trench during excavation and then is degraded Advantages: eliminates dewatering provides continuity of the trench adaptable to a variety of soils and site less expensive than other methods Disadvantages: depth could be a problem risk of collapsing 6 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 3 Diaphragm wall excavators U.S. Europe Long stick backhoe excavator Crane & grab 7 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Long stick backhoes BOOM STICK Most common installation technology for PRB installation BUCKET 8 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 4 Excavation forces 9 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Excavation Ranges and Forces Komatsu PC1250 10 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 5 LS excavation + easy to operate + doesn’t require guide wall - oversized excavators - precision (high BP usage) - work across the excavation 11 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Crane excavator with grab Developed in early 60’s by an Italian company (ICOS) that introduced the concept of diaphragm wall (Puller, 2003) Most common excavating machine in Europe for slurry walls Use in PRB construction (O’Hannesin 2005, PC): 1 pilot scale -> Borden (Canada) 1 ZVI placement -> West Vancover (Canada) 1st full scale -> Torino (Italy) 12 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 6 Crane excavators Crane Grab (a) Rope suspended system + Depth - Precision (b) Kelly mounted - Depth + Precision (c) Hybrid + Depth + Precision 13 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Grabs (a) Mechanical grab - Powerfull (b) Hydraulic Grab + Powerfull 14 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 7 Comparison Backhoe excavators1 Grab excavators2 Max. power 50 - 485 kW 240 – 400 kW Base machine weight 7,000 - 110,000 kg 42,000 - 300,000 kg Lifting capacity 3,500 - 40,000 kg 20,000 - 30,000 kg Weight of bucket/grab 300 - 3,000 kg 8,000 - 24,000 (kg) Excavation width 0.4 - 3.0 m 0.5 - 1.2 m Excavation length - 2 - 4.2 m Capacity of bucket/grab 0.2 - 1 m3 1 - 1.2 m3 Bucket/grab digging force (ISO) 50 - 430 kN 300 - 400 kN Stick crowd force inversely proportional to stick length - Excavation depths 0 - 30 m 5 - 70 m Excavation rate 400 m2/day 300 m2/day 15 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Grab excavator case study 1÷5 Foundry sands and wastes disposals CAHs contamination in groundwater 16 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 8 Hydrogeological characterization Average parameters i=0,011 Saturated thickness b 10 m Hydraulic conductivity k 1,8.10-4 m/s Effective porosity ne 0,2 Hydraulic gradient i 0,011 17 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Contaminant characterization Direct push Piezometers Sampling points Soil samples Gas samples Water samples Area 1 28 - 95 - 662 >150 Area 1 Area 2 MCL Max conc. µg/l Max. conc. µg/l µg/l PCE 0.46 56 1.1 TCE 130 36 1.5 cDCE 135 0.3 60 - 0.1 0.5 GW Conc Area 2 73 130 VC 18 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 9 Geometry of the barrier Length: 120 m (17 panels) Width: 0.6 m (0.5 m of iron) Height: 11.9-13.8 m Reactive height: 9.70-11.80 m Mass of iron: 1700 t Mass of sand: 360 t 19 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Excavation technique Link Belt crawler crane & Casagrande hydraulic grab thick. = 0.6 m width = 4 m capacity= 1030 l Div. Rodio - TREVI 20 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 10 Guide wall & end stops 21 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Biopolymer slurry preparation Product Tap water Guar gum powder Amount / batch 3500 l 22.5 kg Biocide 0.2 kg Soda Ash 2.5 kg 22 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 11 Properties of bioslurry Pseudoplastic yield fluid Density: 1020 kg/m3 Dynamic viscosity: 40 cps 23 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Excavation phase 1 24 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 12 Excavation phase 2 25 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Excavation phase 3 26 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 13 Iron 27 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Sand 28 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 14 Mixing truck 29 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Filling operations 30 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 15 Bioslurry breakdown Degradation of the bioslurry by means of enzymes recirculation with air lifting technique Steve Day, Geo-Solution 31 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Final configuration of the area 32 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 16 Light Piezometer The PRB now 33 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Analitycal results Upstream PCE Downstream U.M. S27 S28 S35 S36 ug/l <0.05 <0.05 <0.05 <0.05 TCE ug/l 25.0 56.0 <0.05 0.4 1,2-DCE ug/l 15.0 83.0 2.8 1.0 1,1-DCE ug/l <0.5 <0.5 <0.05 <0.05 VC ug/l <0.05 <0.05 <0.05 <0.05 Total carcinogenic CAHs ug/l 40.0 139.0 2.8 1.4 34 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 17 Technology comparison Excavation technology Max Gate Length Torino (Italy) LS case study (US) Crane with grab bucket LS backhoe 120 m 68 m 14 m 13 m 52 % volume 89 (140) % volume 18 m2/h 8 days for 120 m Almost the same 150 $/m2 135 $/m2 Max Depth Usage of bioslurry Speed Excavation costs @ max depth 35 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Reagent delivery (reactive zones) Injection methods: Gravity Fracturing □ Hydraulic □ Pneumatic Jetting Pressure Pulse Technology Valved tubings Direct push Soil mixing 36 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 18 Under gravity inside piezometers Inside 2’’-4’’ piezometers Small pressure: low viscosity or high dilution Low injection rates Problem: accumulation sediment inside the well Socks can be used o 37 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Valved tubings Technique used in geotechnical engineering (permeation grouting) Valved tubing with selective injection after isolation with a double packer Average pressure (30 bar) Average radius of influence Multiple injections Cattaneo, 2004 38 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 19 Hydraulic or Pneumatic Fracturing Use of very high pressures in order to generate fractures in the aquifer filled with the reagent High injection rates Non homogeneous permeation and preferential flow www.arstechnology.com 39 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Pressure Pulse Technology PPT Derived from engineering oil Based on the generation of pressure waves that determine acceleration of the interstitial fluid and transient modifications of the porous media structure Not very common Halliburton 40 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 20 Soil Mixing In situ mixing of reagents (expecially ZVI) Bentonite and cement can be added to reduce permeability 41 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Direct push system Hydraulically-powered machines Environmental sampling (soil, gas, groundwater) Grouting and reagents injection 42 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 21 Direct push system Reagents preparation TRS - Ravenna Direct injection Heated Hydratated and mixed www.carsico.it 43 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Direct push system Pumps and injection tips High pressure (69-127 bar) Average pumping rates Injection (Top-down or bottom-up) 44 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 22 Product rheology After hydratation: Few products are newtonian and characterized by a low viscosity Most of the products contain organic material, biopolymers and/or particles: complex rheology usually shear thinning fluids -> moderate to high pressures required Rheology is also influenced by dispersed particles and colloids which can be subject to filtration inside the porous media 45 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 AQUAREHAB (EU proj. FP7) Injection tests nZVI µZVI 46 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 23 Recirculation Sethi 47 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Conclusions Crane & grab excavation is an effective construction method for PRB emplacement also for average-low depths Permeable reactive barriers and reagents injection are complementary technologies 48 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 24 Acknowledgements PRB PRB Design: Studio Bortolami e Di Molfetta Studio Buonomo Veglia Politecnico di Torino Contractors: Technical support: Edil MaVi, Trevi I.M.E.S. E.T.I. Geo-Solutions Field Consultancy: Iron: Ing. S. Marconetto, Ing. S. Day Gotthart Maier 49 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 Acknowledgements NZVI AQUAREHAB EU project FP7, Coordinator for Politecnico di Torino: Dr. Rajandrea Sethi Dipartimento del Territorio, dell’Ambiente e delle Geotecnologie, Politecnico di Torino (DITAG-POLITO), partecipanti: Antonio di Molfetta, Rajandrea Sethi, Tiziana Tosco, Silvia Comba Dipartimento di Scienza dei materiali e dell’Ingegneria chimica, Politecnico di Torino (DISMIC-POLITO), partecipanti: Daniele Marchisio Partners internazionali: Flemish Institute for Technological Research; Katholieke Universiteit Leuven KULeuven;Geological Survey of Denmark and Greenland; Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH; CTM Centre Tecnologic;Technische Universiteit Delft;Sapion Bodemadvies;ISODETECT Gmbh;University of Stuttgart; Wageningen Universiteit;Ben Gurion University of the Negev GBU; Masarykova Univerzita;UNESCO-IHE Institute for Water Education; University of Sheffield; Politecnico di Torino; Hoganas AB; University of Copenhagen; Institut National de l'Environnement Industriel et des Risques; Environmental Institute - SME Progetto CIPE C30, Regione Piemonte, Coordinator: Prof. Antonio Di Molfetta Dipartimento del Territorio, dell’Ambiente e delle Geotecnologie, Politecnico di Torino (DITAG-POLITO), partecipanti: Antonio di Molfetta, Rajandrea Sethi, Tiziana Tosco, Silvia Comba, Valerio Zolla, Alberto Tiraferri Dipartimento di Scienza dei materiali e dell’Ingegneria chimica, Politecnico di Torino (DISMIC-POLITO), partecipanti: Edoardo Garrone, Barbara Bonelli, Marco Armandi, Francesca Freyria Dipartimento di Chimica Analitica, Università di Torino (DICHI-UNITO), partecipanti: Claudio Baiocchi, Claudio Medana, Riccardo Aigotti Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino (DSMP-UNITO): Elena Belluso, Giovanni Ferraris INRIM: Marco Coisson, Franco Vinai 50 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 25 Pubblications 2009 TOSCO T; TIRAFERRI A.; SETHI R. Ionic Strength-Dependent Transport of Microparticles in Saturated Porous Media: Modeling Mobilization and Immobilization Phenomena under Transient Chemical Conditions. ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2008 TIRAFERRI A; CHEN K.L; SETHI R.; ELIMELECH M, Reduced sedimentation and aggregation of nanoscale zerovalent iron in the presence of guar gum, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2008.04.064 2008 TIRAFERRI A; SETHI R., Enhanced Transport of Zerovalent Iron Nanoparticles in Saturated Porous Media by Guar Gum, JOURNAL OF NANOPARTICLE RESEARCH, 2008, ISSN: 1388-0764, DOI: 10.1007/s11051-008-9405-0 2007 SETHI R.; FREYRIA F; COMBA S; DI MOLFETTA A, Ferro nanoscopico per la bonifica di acquiferi contaminati, GEAM. GEOINGEGNERIA AMBIENTALE E MINERARIA, 2007, ISSN: 1121-9041 2007 FREYRIA F; BONELLI B; SETHI R.; GARRONE E; DI MOLFETTA A, Physico-chemical characterization of colloidal iron suspensions for groundwater remediation, Marco Petrangeli Papini - Centro Stampa Universita (ITA), 3rd International Symposium on Permeable Reactive Barriers, Rimini 8-9 nov., 2007, 2007, ISBN: 978-88-87242-98-0 2006 DI MOLFETTA A; SETHI R., Clamshell excavation of a permeable reactive barrier, ENVIRONMENTAL GEOLOGY, 2006, ISSN: 0943-0105, DOI: 10.1007/s00254-006-0215-3 2005 DI MOLFETTA A.; SETHI R., Barriere reattive permeabili, In: Bonifica dei siti contaminati: caratterizzazione e tecnologie di risanamento., A CURA DI BONOMO LUCA, Mc Graw-Hill (ITA), pp. 562-60 2003 DI MOLFETTA, Ingegneria degli acquiferi. Politeko 51 RAJANDREA SETHI, rajandrea.sethi§polito.it Stresa, June 19. 2009 26
Documenti analoghi
Transport of colloids and nanoparticles in saturated porous media
Homogeneous permeation;
Radial and spherical geometry.