Inorganic-Organic Hybrid Materials
Transcript
Inorganic-Organic Hybrid Materials
Inorganic-Organic Hybrid Materials Bressanone Sept. 2006 Hybrid Materials 1 Bressanone Sept. 2006 Hybrid Materials 2 1 Composites – Hybrid Materials cm µm nm CLASSICAL COMPOSITES Property Improvement: • mechanical stability • thermal stability • photochemical stability Hybrid Materials From Molecules to Nanobuilding Blocks Various properties possible depending on precursors and processing Bressanone Sept. 2006 Hybrid Materials 3 Hybrid Materials Composite Material Compound 1 Macroscopic phases Compound 2 Hybrid Material Molecular or nanoscale building blocks The goal is to create materials with specific combinations of properties by combining different molecular building blocks in various ratios and by controlling their mutual arrangement Control at the nanolevel Bressanone Sept. 2006 Hybrid Materials 4 2 Homogeneity vs. Problems: scatters light, mechanical properties, etc… Control over homogeneity: • precursor selection (functional group) • reaction conditions: kinetics, solvent, etc. • interactions between the components Bressanone Sept. 2006 Hybrid Materials 5 Typical Properties of Organic and Inorganic Materials Properties Organic materials (polymers) Inorganic materials (glass, ceramics) Nature of bonds covalent [C–C], van der Waals, H-bonding low low (except polyimides) low low elastic flexible rubbery (depending on Tg) hydrophilic or hydrophobic ionic or covalent high high high high hard strong brittle hydrophilic insulating to conductive non-magnetic at low temperatures and pressures (molding, casting, etc.) insulating to semiconductors magnetic at high temperatures and/or pressures (sintering, glass forming) Tg Thermal stability Density Refractive index Mechanical properties Hydrophobicity Electronic and magnetic properties Processability Bressanone Sept. 2006 Hybrid Materials 6 3 Nanolego Form Function Geometry of the linkage Connectivity Kind of linkage Bressanone Sept. 2006 Hybrid Materials 7 Nanolego: Building Blocks Inorganic Building Blocks O O O O Si O O Ti O Mechanical, optical, electrical, magnetical properties O O O Connecting Blocks O H2C O Si O O O X Ti O Y O Reduction of the crosslinking density, coupling sites between inorganic / organic components Organic Building Blocks Functional groups, crosslinking, polymerizability A Flexibility, elasticity, processability H2 C H2 C C H2 C H2 Bressanone Sept. 2006 Hybrid Materials 8 4 Nanolego: Linking the Building Blocks Polymerization / Polycondensation CH3 COOR CH3 COOR CH3 COOR O HO OR O + O H2N HN O O HN O NH2 OH NH Sol-Gel-Process RO Si OR OR HO + H2O Si OH OH OH OR HO - H2O + H+ HO Si OH OH O OH Na4SiO4 Si HO Si OH OH OH OH Self-Organization Zn(NO3)2 + HO O Zn4O(terephthalate)6 O OH Bressanone Sept. 2006 Hybrid Materials 9 Nanolego: Critical Issues ¾ Homogeneous distribution of the building blocks in the material ¾ Stable distribution: no microphase separation ¾ Interaction between the two components ¾ Structure-property relationships ¾ Inclusion of functionalities ¾ Tailoring of molecular structure ↔ nanostructure ↔ microstructure (= hierarchical structure design) Bressanone Sept. 2006 Hybrid Materials 10 5 Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating networks Dual networks Bressanone Sept. 2006 Hybrid Materials 11 Molecular Precursors Network Modifiers (non-reactive organic groups) (RO)3Si CH3 (RO)3Si (RO)3Si Precursors with Functional Organic Groups (RO)3Si (RO)3Si O O + HS-Si(OR)3 (RO)3Si (RO)3Si O O RO (EtO)3Si O Ti N H N O O N N R OR OR (RO)3TiSO3(Co-phthalocyanine) polymerizable organic groups ⇒ inorganic-organic hybrid polymers Bressanone Sept. 2006 NO2 O O NH2 N H groups with other organic functions Hybrid Materials 12 6 Nano Building Blocks: Polyhedral Oligomeric Silsesquioxanes (POSS) Bressanone Sept. 2006 Hybrid Materials 13 Nano Building Blocks: Functionalized Metal Oxide Clusters Ti16O16(OEt)24(OPr)8 (same with OCH2CH2OC(O)C(Me)=CH2) Zr6O4(OH)4(methacrylate)12 covalent interaction [(BuSn)12O14(OH)6]2+·2 methacrylate[SiW11O39(OSi2(C6H4CH=CH2)2)]4- Bressanone Sept. 2006 Hybrid Materials electrostatic interaction 14 7 Bridged Alkoxysilanes (RO)3Si (RO)3Si-(CH2)n-Si(OR)3 Si(OR)3 H N (RO)3Si-(CH2)m H (CH2)n N H N (CH2)n C H N H N (CH2)m-Si(OR)3 O O (EtO)3Si C O O N N N H (EtO)3Si H N SO2(CH2)2O N O O Si(OEt)3 O 2+ NH (RO)3Si H2N Bressanone Sept. 2006 NH2 Ni NH Si(OR)3 Hybrid Materials 15 Alkoxysilyl-Substituted Organic Polymers CH3 (EtO)3SiO Si O Si(OEt)3 n CH3 (EtO)3Si-(CH2)3 O Bressanone Sept. 2006 CH3 H2 C n C O (CH2)4-O n O Si(OMe)3 (CH2)3-Si(OEt)3 Hybrid Materials 16 8 Pre-formed Nanostructures (Nano)Particles Preformed Oligomers and Polymers Clays / Layered Materials Porous Materials Bressanone Sept. 2006 (Nano)Fibres, Nanotubes Hybrid Materials 17 Consequences of Introducing Organic Substituents ¾ Reduced degree of crosslinking of the inorganic network ¾ Polarity changes (changes in hydrogen bonding) ¾ Reactivity change of the remaining alkoxide groups (electronic and steric effect of the organic substituents) These effects are an inevitable consequence of the organic modification Bressanone Sept. 2006 Hybrid Materials 18 9 Degree of Crosslinking Si(OR)4-nRn n = 1-3 Si(OR)2R2 Si(OR)3R R R R Si Si Si O O O R R Si Si O O O O O O O O Si Si Si Si R R R Silsesquioxanes R R O Si O Si O O R R O n O R Si(OR)R3 R Si O Si R R R R' Oligo- and Polysiloxanes Dimers R Si O O R O Si Si OR Si O O Si Si O O R R R Polyhedral Oligomeric Silsesquioxanes Bressanone Sept. 2006 Hybrid Materials 19 Influence on Reaction Rates Example: (RO)3Si Si(OR)3 0.6 M in methanol, 25°C The dashed line is pH vs. gel time for Si(OMe)4 (2.0 M in methanol, 60°C). Bressanone Sept. 2006 Hybrid Materials 20 10 Influence on Reaction Rates (acac = acetylacetonate, ftac =trifluoroacetylacetonate, dbzm = dibenzoylmethanide) Bressanone Sept. 2006 Hybrid Materials 21 Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks Bressanone Sept. 2006 Hybrid Materials 22 11 Types of Inorganic-Organic Hybrid Materials by Sol-Gel Processing Physically entrapped molecules, particles, etc. Interpenetrating inorganic and organic networks Class I materials: weak interactions R R RR R Class II materials: strong interactions RR R R R R RR RR R R RR R R R R R R RR RR R R R R RRR R R Modification of the gel network by organic groups Bressanone Sept. 2006 Dual inorganic and organic networks connected by covalent bonds Hybrid Materials 23 Entrapped Biomolecules Bressanone Sept. 2006 Hybrid Materials 24 12 Entrapped Biomolecules: Glucose Sensor NO-releasing glucose biosensor (cleaved NO suppresses degradation by bacteria) O Glucose oxidase in MeSi(OEt)3 Gel SiO2 Si CH3 OH N NO H O Si (CH2)3 N (CH2)6 N H in polyurethan M.H.Schoenfisch et al., 2004 Bressanone Sept. 2006 Hybrid Materials 25 Entrapped Inorganic Particles: Dental Filling abrasion 9 µm shrinkage 1,97 vol% adhesion 25,8 / 27,6 MPa pyrogenic silica (≈ 40 nm) + standard dental glass particles (≈ 0,7 µm) Bressanone Sept. 2006 Hybrid Materials 26 13 Entrapped Inorganic Particles: Controlled Release in SiO2 Bressanone Sept. 2006 Hybrid Materials 27 Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks Bressanone Sept. 2006 Hybrid Materials 28 14 Heterogenization of Homogeneous Catalysts Classical approach RO RO RO Si RO Sol-gel approach + MLn A RO Si A RO MLn + MLn A O Si A Si O MLn A MLn O O + MLn + MLn Si O + A RO A Bressanone Sept. 2006 Si Si O E(OR) n A RO O RO O RO O RO Si MLn + E(OR) n O RO A RO + O Si RO RO RO RO RO Si A O + Hybrid Materials 29 Heterogenization of Catalysts by Sol-Gel Processing RO Si RO A MLn Examples: + Si(OR)4 RO Si O A Ph C O Ph P Si(OR)3 Ph MLn O (EtO)3Si Poren pores (EtO)3Si sol-gel Sol-GelProzeß processing Ph Cl P Ru P Ph Cl Ph P P Ph Si(OEt)3 Si(OEt)3 Synthesis of N,N-diethylformamide from CO2, H2 and diethylamine A. Baiker et al., 1999 K K Cl Rh P More active in the hydrosilation of 1-hexene than Rh(CO)Cl(PR3)2 U. Schubert et al., 1989 O SiO2 / Ph (RO)3Si K K K O K K (RO)3Si K K aktive Spezies = katalytisch catalytically active species N H NH2 N Cu2+ NH 2 Catalyst for the oxidation of 3,5-di-tert.butylcatechol to the quinone M. Louloudi et al., 1998 Bressanone Sept. 2006 Hybrid Materials 30 15 Coatings with Optical Properties Photochromism: fast for optical switches, for eye protection, privacy shields slow for optical data storage, energy conserving coatings, etc... Example: Spirooxazine derivative hν1 N N O Δ or hν2 N N O Embedding in sol-gel coatings: For sufficient photochromism: dye concentration > 25 wt% → mechanical stability of sol-gel film is deteriorated. Grafting of the dye to the sol-gel matrix → higher chromophore concentrations can be achieved without affecting the mechanical integrity of the sol-gel matrix Si(OEt)3 HN O N N O O Photochromic coating on paper Bressanone Sept. 2006 Hybrid Materials 31 Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks Bressanone Sept. 2006 Hybrid Materials 32 16 Interpenetrating Networks Sequential Sequentialtwo-step two-stepprocess: process: Second Secondnetwork networkis is formed formedin inthe thefirst first IPN Examples: ¾ Generation of the organic polymer in the pores of an inorganic porous material (in channels of zeolites or mesoporous materials, between sheets of a layered lattice, such as a clay mineral) ⇒ rigid inorganic moiety with a regular pore or channel structure in the nanoscale ¾ Inorganic structures form and interpenetrate an organic polymer (difficulties: incompatibility between the moieties ⇒ phase separation) Bressanone Sept. 2006 Hybrid Materials 33 Interpenetrating Networks Interaction via hydrogen bonds to silanol groups of the forming silica Organic polymers with hydrogen bonding ability: n n NMe2 O OH n n n O O OMe n O O O N OH poly(VP) poly(DMAA) poly(VA) poly(VAc) poly(MMA) poly(HEMA) Si(OR)4 and/or RSi(OR)3 H2O, [Kat] No macro phase separation Resulting materials: high degree of homogeneity and optical transparency Important reaction parameter: pH Change of crosslinking density and interaction with polymer using RSi(OR)3/Si(OR)4 mixtures Bressanone Sept. 2006 Hybrid Materials 34 17 Interpenetrating Networks + Sol from GLYMO and Al(OsBu)3 (H2O/HCl) Poly(isopren-block-ethylenoxide) swollen in THF/CH3Cl (RO)3Si O O Nanostructured hybrid polymer U.Wiesner et al., 2004 Bressanone Sept. 2006 Hybrid Materials 35 Interpenetrating Networks Organic Monomer Inorganic Monomer Catalyst Solvent AIBN TEOS HF Water O OH C. L. Jackson et al. Chem. Mater. 1996, 8, 727 O Initiator Addition of tetrakis(2-(acryloxy)ethoxy)silane improves homogenity TEM images of the nanocomposites: Increasing Sol-Gel Catalyst Concentration => Faster Reaction Bressanone Sept. 2006 Hybrid Materials 36 18 Nanocomposites: Polymer-Clay Layered solid Layered solid + Monomer (Polymerization) Exfoliated layers + Polymer + Monomer (Polymerization) or + Polymer Bressanone Sept. 2006 Hybrid Materials 37 Nanocomposites: Polymer-Clay Bressanone Sept. 2006 Hybrid Materials 38 19 Nanocomposites: Polymer-Clay 15 μm glass fibre in polyolefin 1 nm thick montmorillonite sheet in epoxy resin Bressanone Sept. 2006 Hybrid Materials 39 Nanocomposites: Intercalation of Polymers in Pores Direct Intercalation + Polymer Porous Host Problems: ¾ Pore diameter ↔ size of Polymer ¾ Diffusion of polymer ⇒ Usually only end of polymer sits in pore but not the whole chain Bressanone Sept. 2006 Hybrid Materials 40 20 Nanocomposites: Polymerization in Pores Monomer Intercalation + Monomer Polymerization Porous Host Monomer is interacalated into the pores (vapor, liquid), then polymerization T. Aida et al. 2000 Bressanone Sept. 2006 Hybrid Materials 41 Nanocomposites: Polymerization in Pores T. Aida et al. 2000 T. Bein et al. 1992 Bressanone Sept. 2006 Hybrid Materials 42 21 Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks Bressanone Sept. 2006 Hybrid Materials 43 Dual Network Structures Preparation strategies Concomitant formation of the inorganic and organic structures Stepwise formation of the organic and inorganic networks ¾ from pre-formed organic structures ¾ from pre-formed inorganic structures Options Chemical composition of the inorganic component(s) Chemical composition of the organic component(s) Proportion of the inorganic/organic components Curing method (thermal / photochemical) Dimension of the inorganic / organic components (molecular, nanometer, extended) Bressanone Sept. 2006 Hybrid Materials 44 22 Concomitant Formation of Inorganic and Organic Network Typical procedure Metal Alkoxides Metal Salts + water (ev. catalyst or additives) - alcohol Precursors Hydrolysis Condensation Sol Gelation formation of inorganic network Gel formation of organic network Hardening (thermal or uv) Many Examples: Coatings Section Hybrid Polymer Bressanone Sept. 2006 Hybrid Materials 45 Concomitant Formation of Inorganic and Organic Network Often used precursors O (RO)3Si (RO)3Si O (RO)3Si O O O O or O OH O O + Zr(OR)4 O + Si(OR)4, Zr(OR)4, Al(OR)3, etc. + acrylate, epoxide monomers, etc. increase of “inorganic / organic ratio” decrease of “inorganic / organic ratio” Bressanone Sept. 2006 Hybrid Materials 46 23 Concomitant Formation of Inorganic and Organic Network O O O O O O O O O O O O O Sequential formation of the organic network UV-polymerization of methacryl groups photo-initiator, hν O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O thermal polymerization of epoxy groups ΔT O O O O O O O O O O O O O O O O O O O O O O O O O Bressanone Sept. 2006 O O O Hybrid Materials O 47 *) SBU: Sequentially Built-up Concomitant Formation of Inorganic and Organic Network O H2O / NaF Si CH2O SiO2 4 O CH2OH n H2O / NaF O(CH2)2O Si 4 Bressanone Sept. 2006 aq. ROMP O + Free Radical Polymerization SiO2 + Hybrid Materials O O(CH2)2OH 4 48 24 Photochemical Crosslinking (3D Laser Lithography) Coating or forming of ORMOCER® (with chromophor as UV initiator) Direct 3D-laser writing (2-photon polymerisation with femtosecond laser pulses) Requirements for hardening: Development of the structure (removal of uncured ORMOCER®) • precise focussing • 2-photon process • polymerisation in Ormocer® layer (O2 protection) • chromophor as initiator Ormocer® = Organically modified Ceramics Bressanone Sept. 2006 Hybrid Materials 49 Photochemical Crosslinking (3D Laser Lithography) CAD File Layer model ‚Venus of Milo‘ in ORMOCER® (REM) I am made from ORMOCER®! Bressanone Sept. 2006 Hybrid Materials 50 25 Photochemical Crosslinking (3D Laser Lithography) Bressanone Sept. 2006 Hybrid Materials 51 Hybrid Polymers from Pre-Formed Organic Polymers CH3 Low shrinkage by the use of prepolymerized materials CH3 x acrylic component silane component (MeO)3Si(H2C)3O O y MeO O 1. inorganic condensation 2. organic polymerization acrylic monomer + polymer (incomplete polymerization) inorganic condensation between fully polymerized polyacrylate Bressanone Sept. 2006 Hybrid Materials 52 26 Hybrid Polymers from Pre-Formed Organic Polymers A.-M. Caminade, J.-P. Majoral, J. Mater. Chem., 2005, 15, 3643-3649 Hybrid Materials applying Dendrimers Porous Materials using Dendrimers as Templates Bressanone Sept. 2006 Hybrid Materials 53 Hybrid Polymers from Pre-Formed Inorganic Structures Bressanone Sept. 2006 Hybrid Materials 54 27 Hybrid Polymers from Pre-Formed Inorganic Structures Improved Properties through Controlled Reinforcement of Polymer Chains at the Molecular Level R O Si R Si R Si O Si O O R Si O Si R' O O O O RO O Si R Si O R www.hybridplastics.com Bressanone Sept. 2006 Property enhancements via POSS observed in POSS-copolymers and blends • Increased Tdec • Increased Tg • Reduced Flammability • Reduced Heat Evolution • Lower Density • Disposal as Silica • Extended Temperature Range • Increased Oxygen Permeability • Lower Thermal Conductivity • Thermoplastic or Curable • Enhanced Blend Miscibility • Oxidation Resistance • Altered Mechanicals • Reduced Viscosity Hybrid Materials 55 Hybrid Polymers from Pre-Formed Inorganic Structures POSS for fire retardant materials Bressanone Sept. 2006 Hybrid Materials 56 28 Hybrid Polymers from Pre-Formed Inorganic Structures Polymerizable Metal Oxo Clusters X X X X X X X X X Polymerizable groups X Zr6O4(OH)4(methacrylate)12 for free radical polymerization Zr6O4(OH)4(5-norbornene-2-carboxylate)12 for ROMP Bressanone Sept. 2006 Hybrid Materials 57 Hybrid Polymers from Pre-Formed Inorganic Structures Metal Oxo Clusters as Initiators for ATRP multifunctional initiator + monomer X X + catalyst X X X X X X + solvent = PMMA, PS, PtBuA X catalyst = pmdeta / CuBr or CuCl e.g. Ti6O4(OOCCBrMe2)(OiPr)8 0.9 100 0.7 ln (M0/M) G.Kickelbick et al. Bressanone Sept. 2006 80 Y=0,0058*X R=0,997 70 60 0.5 50 0.4 40 0.3 Polydispersities <1.5. 0.2 90% of the chain ends 0.1 still active after isolation 0.0 0 Hybrid Materials 30 Conversion [%] 0.6 90 ln (M 0/M) linear Fit for ln (M 0/M) 0.8 20 10 0 20 40 60 80 100 120 140 160 Time [min] 58 29 Hybrid Polymers from Pre-Formed Inorganic Structures Combination of polyoxometallates (electrochromism, photochromism, conductivity, redox activitities) + conjugated molecules and polymers ⇒ electrically active organic materials (light emitting diodes, field-effect transistors, solid-state lasers) Monofunctionalization of Mo6O192- Examples: Z. Peng et al. 2004 Bressanone Sept. 2006 Hybrid Materials 59 Hybrid Polymers from Pre-Formed Inorganic Structures Z. Peng et al. 2004 Bressanone Sept. 2006 Hybrid Materials 60 30 Hybrid Polymers from Pre-Formed Inorganic Structures Magnetic Polymers Mn12O12(OOC-CH=CH2)16 Radical polymerization + CH2=CMe-COOMe PMMA crosslinked by Mn12 „Mn12“ total cluster spin S = 10 (4 MnIV, S = 3/2 + 8 MnIII, S = 2) Bressanone Sept. 2006 Superparamagnetic Hybrid Materials 61 Hybrid Polymers from Pre-Formed Inorganic Structures Preparation of nanoparticles „Stöber-Process“ Si(OEt)4 + NH4OH FG Surface modification O N NC CH3 N CH3 CH3 CN SiO FG Si Si FG O O O OO O O Si O O O O O O Si O 2 O O O Si O O FG O O O OO Si FG FG Si Initiators at the surface, e.g. (EtO)3Si(H2C)3O HO HO OH OH HO OH HO HO OH HO OH 2 HO OH HO OH HO OH HO HO HO OHOH FG O CH3 (EtO)3Si(H2C)3O Br CH3 SiO (RO) 3 Si FG FG Polymerization from the functionalised surface AFM G.Kickelbick et al. Bressanone Sept. 2006 Hybrid Materials 62 31
Documenti analoghi
presentation
In collaboration with Boreskov Institute of Catalysis (BIC) – Russian Academy of Science
INITIAL STATE