Dalle disuguaglianze di Bell alla crittografia quantistica
Transcript
Dalle disuguaglianze di Bell alla crittografia quantistica
Dalle disuguaglianze di Bell alla crittografia quantistica: applicazioni della fisica fondamentale e dell’Informazione Quantistica Giuseppe Vallone email: [email protected] Dip. di Fisica, Università di Torino - 5 Giugno 2015 What is Quantum Information? Information Theory Quantum Mechanics ⇔ Merging two big XXth century revolutions: information theory (Shannon, Turing) and Quantum Mechanics. Pag. 2 Examples of applications Quantum computer Quantum cryptography Quantum metrology Pag. 3 Esempi di applicazioni Pag. 4 Quantum sensing Quantum imaging Quantum simulation Quantum random number generation But... ...be aware of fake! Pag. 5 Summary Pag. 6 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Quantum Mechanics QKD QRNG Bell Summary Pag. 7 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Superposition principle I Pag. 8 Physical states are representes as vectors |ψi Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Superposition principle I Physical states are representes as vectors |ψi I Superposition principle: if |ψ1 i and |ψ2 i are physical states, any linear combination is a physical state: |Ψi = a|ψ1 i + b|ψ2 i Pag. 8 a, b ∈ C Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Superposition principle I Physical states are representes as vectors |ψi I Superposition principle: if |ψ1 i and |ψ2 i are physical states, any linear combination is a physical state: |Ψi = a|ψ1 i + b|ψ2 i I From classical bit (two orthogonal states |0i and |1i) to quantum-bit , or qubit: |ψi = α|0i + β|1i Pag. 8 a, b ∈ C α, β ∈ C , |α|2 + |β|2 = 1 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Superposition principle I Physical states are representes as vectors |ψi I Superposition principle: if |ψ1 i and |ψ2 i are physical states, any linear combination is a physical state: |Ψi = a|ψ1 i + b|ψ2 i I From classical bit (two orthogonal states |0i and |1i) to quantum-bit , or qubit: |ψi = α|0i + β|1i I Pag. 8 a, b ∈ C α, β ∈ C , |α|2 + |β|2 = 1 indistinguishability ⇒ INTERFERENCE! Quantum Mechanics QKD QRNG Bell Entanglement Conclusions State superposition Example 1: photons on a semi-reflective mirror (beam splitter) Pag. 9 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions State superposition Example 1: photons on a semi-reflective mirror (beam splitter) |1i |0i Pag. 9 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions State superposition Example 1: photons on a semi-reflective mirror (beam splitter) √1 (|0i 2 Pag. 9 + |1i) Quantum Mechanics QKD QRNG State superposition Example 2: two-slit experiment Pag. 10 Bell Entanglement Conclusions Quantum Mechanics QKD QRNG Bell State superposition Example 3: Schrödinger cat 1 |ψi = √ (|livei + |deadi) 2 Pag. 11 Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement State superposition up to 6910 AMU, 430 atoms Pag. 12 Quantum interference of large organic molecules, Nature Communication 2, 263 (2011) Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Misurement and no-cloning I Pag. 13 The measurement (in general) perturbs quantum states Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Misurement and no-cloning Pag. 13 I The measurement (in general) perturbs quantum states I The output of a measurement is probabilistic (if the state is not an eigenstate of the observable) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Misurement and no-cloning I The measurement (in general) perturbs quantum states I The output of a measurement is probabilistic (if the state is not an eigenstate of the observable) I Impossibility of perfect cloning: quantum copy-machine is not physical @ U | U |ψiA → |ψiA |ψiB Pag. 13 ∀|ψi Quantum Mechanics QKD QRNG Uncertainty principle I Bound on the precision of non-commuting observables: Heisenberg uncertainty principle ∆x∆p ≥ Pag. 14 ~ 2 Bell Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Uncertainty principle I Bound on the precision of non-commuting observables: Heisenberg uncertainty principle ∆x∆p ≥ I Pag. 14 ~ 2 The lower is the uncertainty on the position, the larger is the uncertainty on the momentum (and viceversa) Conclusions Quantum Mechanics QKD QRNG Bell Summary Pag. 15 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions QKD principles The best method to encrypt a message is the One-Time-Pad (OTP) protocol: for a n-bit message, a n-bit secure key is needed Quantum key distribution (QKD) allows two users to exchange random and secret keys Pag. 16 Quantum Mechanics QKD QRNG Bell QKD in a nutshell BB84 protocol Pag. 17 Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Secret key rate Basic tools: Pag. 18 I two non-commuting basis I no-cloning theorem I any measurement (generally) perturbs the systems ⇒ Eve detection! Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Secret key rate Basic tools: I two non-commuting basis I no-cloning theorem I any measurement (generally) perturbs the systems ⇒ Eve detection! Secret key rate: r = 1 − 2h2 (Q) with Q = QBER Pag. 18 h2 (Q) = −Q log2 (Q) − (1 − Q) log2 (1 − Q) Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Secret key rate Basic tools: I two non-commuting basis I no-cloning theorem I any measurement (generally) perturbs the systems ⇒ Eve detection! Secret key rate: r = 1 − 2h2 (Q) with Q = QBER h2 (Q) = −Q log2 (Q) − (1 − Q) log2 (1 − Q) If Eve is gaining information on the key, the key is discarded. Eve has no information on the secret message Pag. 18 Conclusions Quantum Mechanics QKD QRNG Bell Entanglement QKD in the lab QKD system for BB84 protocol Free-space QKD prototype Pag. 19 Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Aligment-free OAM QKD: 210m free space link Hybrid qubit: α|Liπ ⊗ |riO + β|Riπ ⊗ |liO Rotaton-invariant states! Pag. 20 G. Vallone, et al., Phys. Rev. Lett. 113, 060503 (2014) Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions 15 mean QBER≡ E µ =3.81±0.06% 10 5 mean gain≡ Q µ =(1.43±0.01) × 10 −2 0.02 0.01 0 0 15 10 5 100 200 300 400 500 600 0 Gain(dB) 0 Gain QBER(%) Gain and QBER time(s) The data show 10 minutes of acquisition. Dashed lines represent mean values. QBER and gain fluctuations from block to block are due to transmission fluctuation caused by the channel turbulence and to the finite size of the blocks. Pag. 21 G. Vallone, et al., Phys. Rev. Lett. 113, 060503 (2014) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Satellite quantum communication I Source on satellite simulated by a CCR CCR: Corner-Cube Retroreflector I Source (Alice) need to be at the single photon level I Short pulses necessary for background rejection: qubit interleaving strong SLR pulses Pag. 22 G. Vallone, et al., Experimental Satellite Quantum Communication, Phys. Rev. Lett. (in press) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Single passage of LARETS Orbit height 690 km - spherical brass body 24 cm in diameter, 23 kg mass, 60 Metallic coated Corner-Cube Retroreflectors Satellite distance (km) Apr 10th, 2014, start 4:40 am CEST Time (s) 0 1600 50 150 200 250 300 |Ri |H i 1400 |V i 1200 |Li 1000 20 Counts 100 Det|H i 10 Det|H i D e t | Li D e t | Li 0 10 Det|V i 20 −2 −1 0 1 2 Det|V i −2 −1 0 1 2 Det|Ri −2 −1 0 1 2 Det|Ri −2 −1 0 1 2 ∆ = t me as − t r e f (ns) Detection of four polarization states received from satellite 10 s windows: arrival time within 0.5ns from predictions Pag. 23 G. Vallone, et al., Experimental Satellite Quantum Communication, Phys. Rev. Lett. (in press) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Commercial QKD First commercial example of security protocol based on Quantum Mechanics ID Quantique (CH) SeQurenet (FR) Pag. 24 MagiQ (US) Quintessence (AU) Toshiba (UK) Quantum Mechanics QKD QRNG Bell Summary Pag. 25 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Random number in everyday life Pag. 26 I RANDOM NUMBERS are needed to encrypt all digital communications (email, social networks) I All classical security protocols used in e-commerce or credit card are based on RANDOM NUMBERS Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Quantum Random Number Generators (QRNG) I intrinsic randomness of quantum measurements Pag. 27 G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Quantum Random Number Generators (QRNG) I intrinsic randomness of quantum measurements I The output of the measurement cannot be predicted (even if the initial state is perfectly known) Pag. 27 G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Quantum Random Number Generators (QRNG) I intrinsic randomness of quantum measurements I The output of the measurement cannot be predicted (even if the initial state is perfectly known) I Randomness is not due to ignorance on the initial conditions (like coin tossing) How to distinguish 1 |ψi = √ (|Hi + |Vi) 2 (quantum randomness) from 1 1 ρ = |HihH| + |VihV| 2 2 Pag. 27 (classical randomness)? G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014) Quantum Mechanics QKD QRNG Bell Entanglement Conclusions QRNG certified by the uncertainty principle For mutually unbiased basis Z and X in d dimensions, the Entropic Uncertainty Principle is: Hmin (Z|E)ρ + Hmax (X|B)ρ ≥ log2 d Base Z : {|Hi/|Vi} Random bits Base X : {|+i/|−i} Randomness certification pguess (Z|E) ≤ Pag. 28 1 X√ 2 ( px ) d x G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014) Quantum Mechanics QKD QRNG Bell Summary Pag. 29 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions What is Entanglement? Correlation and superposition. In Schrödinger word: "the characteristic trait of quantum mechanics" 1 1 |Ψi = √ (|HiA |ViB − |ViA |HiB ) = √ (| ↑iA | ↓iB − | ↓iA | ↑iB ) 2 2 6= |ϕ1 iA ⊗ |χ2 iB A B Correlations that cannot be obtained by classical systems! Pag. 30 Quantum Mechanics QKD QRNG Bell EPR paradox: the beginning... Einstein, Podolsky e Rosen (EPR), 1935: Pag. 31 Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions EPR paradox: the beginning... Einstein, Podolsky e Rosen (EPR), 1935: 1 Pag. 31 Reality: if, without disturbing a system a physical quantità can be predicted, then an element of reality is associated to such quantity; Quantum Mechanics QKD QRNG Bell Entanglement Conclusions EPR paradox: the beginning... Einstein, Podolsky e Rosen (EPR), 1935: Pag. 31 1 Reality: if, without disturbing a system a physical quantità can be predicted, then an element of reality is associated to such quantity; 2 Completeness: every element of reality must be contained in the physical theory; Quantum Mechanics QKD QRNG Bell Entanglement Conclusions EPR paradox: the beginning... Einstein, Podolsky e Rosen (EPR), 1935: Pag. 31 1 Reality: if, without disturbing a system a physical quantità can be predicted, then an element of reality is associated to such quantity; 2 Completeness: every element of reality must be contained in the physical theory; 3 Locality: any action on a system A (Alice) cannot change the physical reality of a system B (Bob) spatially separated. Quantum Mechanics QKD QRNG Bell Entanglement Conclusions The "paradox" I Pag. 32 EPR aim was to demonstrate that Quantum Mechanics is NOT a complete theory. Quantum Mechanics QKD QRNG Bell Entanglement Conclusions The "paradox" I EPR aim was to demonstrate that Quantum Mechanics is NOT a complete theory. I The “EPR paradox” is based on entangled states: 1 |Ψ− iA,B = √ (|HiA |ViB − |ViA |HiB ) 2 Pag. 32 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions The "paradox" I EPR aim was to demonstrate that Quantum Mechanics is NOT a complete theory. I The “EPR paradox” is based on entangled states: 1 |Ψ− iA,B = √ (|HiA |ViB − |ViA |HiB ) 2 I If Alice (on the first particle) and Bob (on the second particle) measure the polarization (or spin) in the same direction the obtain always opposite results. Hypotesis: Locality and Realism ⇓ EPR paradox: QM is not complete! Pag. 32 Quantum Mechanics QKD QRNG Bell Entanglement Local hidden variable model Does an alternative model exist? λ λ λ : Hidden variable (real and local) Correlation: hAi Bj i = p(Ai = Bj ) − p(Ai 6= Bj ) Pag. 33 Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Bell Inequality I Bell inequality: for any local hidden variable theory it holds: SCH ≡ |hA1 B1 i + hA2 B1 i + hA1 B2 i − hA2 B2 i| ≤ 2 Pag. 34 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Bell Inequality I Bell inequality: for any local hidden variable theory it holds: SCH ≡ |hA1 B1 i + hA2 B1 i + hA1 B2 i − hA2 B2 i| ≤ 2 I The inequality is violated by a (singlet) entangled state with A1 , A2 , B1 and B2 chosen as in figure: Quantum Mechanics predicts: √ hSCH ientangled state = 2 2 > 2 Pag. 34 A2 A1 B1 B2 Quantum Mechanics QKD QRNG Bell Entanglement Conseguences Pag. 35 I It is not possible to describe nature with a local hidden variable theory I Neither the particle "knows" in advance the output of the measurement I Loopholes... Conclusions Quantum Mechanics QKD QRNG Bell Entanglement How entanglement can be generated? Parametric down-conversion (probabilistic effect) Cono H (da #1) Laser #1 #2 Cristalli nonlineari Pag. 36 Cono V (da #2) Conclusions Quantum Mechanics QKD QRNG Bell Entanglement What is the measured value of SCH ? In the lab: hSCH iexp = 2.80 ± 0.04 > 2 , Pag. 37 √ 2 2 ' 2.8284 Conclusions Quantum Mechanics QKD QRNG Bell Summary Pag. 38 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions Entanglement Conclusions Quantum Mechanics QKD QRNG Quantum Teleportation Like Star Trek? Pag. 39 Bell Entanglement Conclusions Quantum Mechanics QKD QRNG Quantum Teleportation Like Star Trek? almost.... Pag. 39 Bell Entanglement Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Quantum Teleportation of a qubit IMPORTANT: Alice does not know the state that must be teleported to Bob. It is impossible for Alice to copy the qubit state. Pag. 40 Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Quantum Teleportation of a qubit IMPORTANT: Alice does not know the state that must be teleported to Bob. It is impossible for Alice to copy the qubit state. Pag. 40 Quantum Mechanics QKD QRNG Bell Entanglement First experimental realization: 1997 Esperimento di Roma Pag. 41 Esperimento di Vienna Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Device Independent Protocols Pag. 42 I Bell inequality was introduced to deal with fundamental problems: the reality and locality of quantum mechanics I It has been violated in many different experiments (photons, ions, diamonds, atoms....) I close to loophole-free violations I The Bell inequality is now used as a tool to certify entanglement: device-independent protocols Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Device Independent Protocols ALICE X: choice of the measurement basis a: output of the measurement BOB Y: choice of the measurement basis b: output of the measurement The following probabilities are measured: P(a, b|X, Y) If the above probabilities violate a Bell Inequality, entanglement between Alice and Bob can be proved Pag. 43 Quantum Mechanics QKD QRNG Bell Entanglement Device Independent QKD I In standard QKD system, the security is based on the working mechanism of the devices I In Device-Independent QKD, the devices are BLACK BOXES: no assumption on their functioning I Key rate related to the violation of the Bell inequality r = 1 − h2 (Q) − h2 [f (SCH )] √ 1+ (SCH /2)2 −1 e Q =QBER. con f (SCH ) = 2 I Pag. 44 If the inequality is not violated, a vanishing key rate is obtained Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions DI-QKD with non-maximally entangled states I I DI protocols requires high detection efficiency in order to close the detection looholes Non-maximally entangled states requires lower threshold efficiency ηc compared to maximally entangled states Ηc 0.85 0.80 0.75 0.70 0.0 0.2 0.4 0.6 0.8 1.0 Conc ⇒ Define a protocol with non-maximally entangled states for DI-QKD Pag. 45 G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014). Quantum Mechanics QKD QRNG Bell Entanglement Conclusions Experimental key rates SCH 0.2 0.2 e nt -B 92 ( ϕ = θ ) e nt -B 92 ( ϕ = θ ) 0.15 ϕ = ar c t an( si nθ ) 0.15 r 0.1 Pag. 46 ϕ = ar c t an( si nθ ) 0.1 0.05 0.05 0 0 −0.05 no B e ll violat ion r e gion π /8 π /4 π /3 π /2 θ no s e c ur e ke y r e gion π /8 π /4 π /3 π /2 G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014). θ Quantum Mechanics QKD QRNG Bell Entanglement Device Independent QRNG I Random bit generation rate: r = − log2 1 − log2 1 + I Pag. 47 s 2− 2 SCH 4 Vanishing rate if SCH ≤ 2 G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014). Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Summary Pag. 48 1 Quantum Mechanics 2 Quantum Key Distribution 3 Quantum Random Number Generators 4 Entanglement and Bell inequalities 5 Protocols exploiting entanglement Teleportation “Device Independent” protocols 6 Conclusions G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014). Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions I Pag. 49 Deep connection between fundamental physics and applications I Quantum communications in space: towards satellite quantum network I QRNG in commercial devices Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Perspectives Explore the limits of Quantum Mechanics and quantum correlations over very long distances Pag. 50 Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Research group: QuantumFuture email: [email protected] http://quantumfuture.dei.unipd.it/ Pag. 51 Conclusions Quantum Mechanics QKD QRNG Bell Entanglement Conclusions REFERENCES I G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, P. Villoresi, Experimental Satellite Quantum Communications, Phys. Rev. Lett. (in press) I G. Vallone, et. al., Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels, Phys. Rev. A 91, 042320 (2015). I G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, Loss tolerant device-independent quantum key distribution: a proof of principle, New J. Phys. 16, 063064 (2014). I G. Vallone, et al., Free-space QKD by rotation-invariant twisted photons, Phys. Rev. Lett. 113, 060503 (2014). I G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90, 052327 (2014). I D. Bacco, M. Canale, N. Laurenti, G. Vallone, P. Villoresi, Experimental quantum key distribution with finite-key security analysis for noisy channels, Nature Communications 4, 2363 (2013). I I. Capraro, A. Tomaello, A. Dall’Arche, F. Gerlin, R. Ursin, G. Vallone, P. Villoresi, Impact of turbulence in long range quantum and classical communications, Phys. Rev. Lett. 109, 200502 (2012). Pag. 52
Documenti analoghi
Untitled - Problemi Attuali di Fisica Teorica
rather intense pulsed fields, where conditioning would be relevant, it is necessary to determine the
number of photons in each pulse. To this aim we show that the correlation coefficient between th...
Continuous-variable-entanglement dynamics in structured reservoirs
fundamental quantum property is also fragile: the unavoidable interaction of quantum systems with their external environment leads to the irreversible loss of both quantum coherence 共decoherence兲 a...
Quantum mechanics of the damped harmonic oscillator
Using the basic properties of determinants it is possible to show [15] that both Scl [x] and xcl (t) are
independent of the choice of the fundamental system of solutions.
Now, to determine the kern...