tsearch v1 6
Transcript
tsearch v1 6
Neutrino Oscillations Neutrino oscillations depend from νe ν1 νµ = U ν3 ντ ν3 • 3 mixing angles, θ12 , θ23 , θ13 • 2 mass differences: ∆m212 , ∆m223 • 1 CP phase δ −iδ c13 s12 s13 e c13 c12 iδ iδ U (θ12 , θ23 , θ13 , δ) = −c23 s12 − s13 s23 c12 e c23 c12 − s13 s23 s12 e c13 s23 s23 s12 − s13 c23 c12 eiδ −s23 c12 − s13 c23 s12 eiδ c13 c13 In vacuum: P (να → νβ ) = −4 2 jk 2 ∆mjk L k>j Re[Wαβ ] sin 4Eν ±2 2 jk 2 ∆mjk L k>j Im[Wαβ ] sin 2Eν 2 neutrinos : P (να → νβ ) = sin2 2θ · sin2 (1.27∆m2αβ [eV 2 ]L[km]/E[GeV ]) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 1 α = e, µ, τ j = 1, 2, 3 jk ∗ ∗ Wαβ = Uαj Uβj Uαk Uβk ν oscillations are the most important discovery in hep of the last 15 years. They measure fundamental parameters of the standard model. Mixing angles, neutrino masses and the CP phase δCP are fundamental constants of the standard model. They are a probe of the GUT scales . The smallness of neutrino masses is connected to the GUT scale through the see-saw mechanism. They are directly linked to many fields in astrophysics and cosmology : baryogenesis, leptogenesis, galaxies formation, dynamic of supernovae explosion, power spectrum of energy anisotropies, etc. They open the perspective of the measure of leptonic CP violation. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 2 If you are skeptical about that .... Experimental articles with more than 500 cites in the last 15 years in the QSPIRES database (at 04/04/03): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 SK SCP SST Evidence for Oscillation of Atmospheric Neutrinos. Measurements of Ω and Λ from 42 High Redshift SN. Observational Evidence from SuperNovae for an 1705 1311 1293 COBE CDF D0 SK Chooz Boomerang Chooz Accelerating Universe and a Cosmological Constant. Structure in the COBE DMR First Year Maps. Observation of TOP Quark Production in p − p Collisions. Observation of the Top Quark. Atmospheric νµ /νe Ratio in the MultiGeV Energy Range. Initial Results from CHOOZ. A Flat Universe from High Resolution Maps of the CMB. Limits on Neutrino Oscillations from the CHOOZ 1036 930 889 751 683 644 635 Kamiokande CLEO SNO Homestake LSND SK CDF SK IMB SK LSND Experiment. Observation of a Small Atmospheric νµ /νe Ratio. First Measurement of the Rate for the Inclusive b —> sγ . Measurement of the rate of νe + d –> p + p + e- ... Measurement of the Solar νe Flux ... Evidence for ν µ —> ν e Oscillations from LSND. Measurement of a Small Atmospheric νµ /νe Ratio. Evidence for TOP Quark Production in p − p .... Study of the Atm. ν Flux in the MultiGeV Energy Range. The νe and νµ Content of the Atmospheric Flux. Solar Neutrino Data Covering Solar Cycle 22. Neutrino Oscillations from LSND. 628 618 592 565 563 561 550 547 535 504 500 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 3 Most of the parameters are waiting to be measured 2 12 δm θ12 SOLARS+KAMLAND -4 -5 2 5 10 <δm12<3 10 eV 2 SOLARS+KAMLAND 2 0.2 < sin ( θ 12 ) < 0.5 Addressed by a SuperBeam/Nufact experiment δm 2 23 δm 2 23 = 2.6 +/- 0.4 eV θ 13 δCP Σ mν θ23 ATMOSPHERICS 2 ATMOSPHERICS 0.9 < sin 2( θ23 ) < 1 2 CHOOZ LIMIT θ 13 < 14 0 Mass hierarchy BETA DECAY END POINT Σ m ν < 6.6 eV Dirac/Majorana M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 4 Neutrino Oscillation Experiments Palo Verde Minos LSND Mini Boone ???? Numi off-axis ???? SNO Kamland K2K JHF Fase I Fase II (?) Super Kamiokande 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Chorus Opera Nomad Icarus 2008 2009 2010 GNO M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 2012 2013 2014 2015 Nufact ? Macro Chooz 2011 Borex 5 The capital importance of θ13 Present limit from CHOOZ: sin2 2θ13 ≤ 0.1. Both solar and atmospheric results are compatible with θ13 = 0. Solar+Atmospherics favor a near bi-maximal mixing matrix (VERY DIFFERENT from CKM matrix!) −iδ 0 s13 e 1 0 0 c13 U = 0 1 0 0 c23 s23 −s13 eiδ 0 0 −s23 c23 c13 θ13 → 0 ⇒ c12 s12 0 −s12 c12 0 , 0 0 1 The 3x3 matrix is a trivial product of two 2x2 matrixes. θ13 drives νµ → νe subleading transitions ⇒ the necessary milestone for any subsequent search: neutrino mass hierarchy and leptonic CP searches. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 6 Subleading νµ p(νµνe) <E >=1.00 GeV 2 sin (2θ 13)=0.01 sin2(2θ 12)=0.8 δm 213 =2.5E-3 eV 2 2 δm 12 =7.E-5 eV 2 δ=0 − νe oscillations Solar peak p(νµ → νe ) developed at the first order of matter effects p(νµ → νe ) = θ13 peak 0 5000 10000 15000 20000 25000 30000 p(νµνe) L (km) Total Solar θ13 CPeven CPodd 0.008 0.007 0.006 0.005 δ =-π/2 JHF equivalent baseline CNGS equivalent baseline 0.004 0.003 4c213 s213 s223 ∆m213 L sin 4E 2 θ13 driven ∆m213 L ∆m212 L ∆m223 L + sin sin CPeven − s12 s13 s23 ) cos 4E 4E 4E ∆m213 L ∆m212 L ∆m223 L 2 − 8c13 c12 c23 s12 s13 s23 sin δ sin sin sin CPodd 4E 4E 4E ∆m212 L 2 2 2 2 2 2 2 + 4s12 c13 {c13 c23 + s12 s23 s13 − 2c12 c23 s12 s23 s13 cosδ} sin solar driven 4E ∆m213 L aL ∆m223 L − 8c212 s213 s223 cos sin (1 − 2s213 ) matter effect (CP odd) 4E 4E 4E √ where a = ±2 2GF ne Eν = 7.6 · 10−5 ρ[g/cm3 ]Eν [GeV ] [eV 2 ] 8c213 s12 s13 s23 (c12 c23 cosδ 0.002 0.001 0 0 50 100 150 200 250 300 350 400 450 500 L (km) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 7 The hunting for θ13 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. • Possibilities of the next Long Baseline experiments. • Possible experimental approaches. • Proposals for new initiatives 8 Possible experimental approaches to θ13 , Part I Long Baseline Experiments Detect νµ → νe transitions via νe appearance in a not so pure νµ beam. Experimental backgrounds: • Beam νe contamination (∼ 0.5%) • π ◦ production in NC νµ interactions. • νµ → ντ → τ → e− ν e ντ (N.B. ντ production ∝ (∆m223 )2 , very difficult to normalize in absence of a precise measure of ∆m223 ) MINOS Twice the Chooz sensitivity, limited by the coarse granularity of the detector and by the systematics. ICARUS Five times the Chooz sensitivity in 8 years of data Upgrade CHOOZ (Mikaelyan et al. hep-ph/0109277, D. Nicoló at NO-VE 2001) The cleanest approach to θ13 is 2 p(νe → νe ) ∝ 1 − sin not influenced by δ or MSW effects. Chooz can be improved by a factor 5 if: • Use a detector as big as 10× the Chooz detector. • Use a close detector, to be placed underground ⇒ σsys 0.5% • Measure backgrounds at reactor off ⇒ σstat 0.5% taking with a 3 kton detector. Computed neglecting systematic errors (but no close detector in the CNGS beam). M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 2 2 ∆matm L 2θ13 sin , 4E 9 Possible experimental approaches to θ13 , Part II Atmospheric Neutrino MSW resonance in the Earth (Bernabeu et al. hep-ph/0102184, Monolith internal SuperNovae notes) The resonance is described by • ER = ± cos 2θ13 2 • ΓR = ∆m2 √ 13 2GF Ne ∆m2 2 sin 2θ13 2√2G 13N . F e This latter can measure a good θ13 , having a detector with L/E resolution, as for instance Monolith. neutrinos MSW in the Earth (Smirnov-Lunardini. hep-ph/01006149) Three big Supernovae detectors are running: SK, SNO, LVD in three different contintents. In case of a galactic (∼ 10 Mpc) SuperNova explosion, it’s very likely that one detector can measure the 1.4 SN neutrino spectrum undistorted, while another can 1.2 measure the ν after they have crossed the Earth’s Core. 1 The first one normalizes the spectrum, the second 0.8 can directly measure the MSW distortion to the 0.6 spectrum. 0.4 Model independent measurement of sign(∆m212 ) at 2-3 0.2 0 10 2 10 3 L/E (km/GeV) σ and a verification that sin2 2θ13 ≥ 10−5 (otherwhile the transition cannot happen). 200 kton/year ⇒ 2× Chooz 400 kton/year ⇒ 4× Chooz (scales with sin 2θ13 ) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 10 JHF-Japan Hadron Facility at Jaeri Neutrino beam from the 50 GeV - 0.75 MW proton beam at the Hadron Facility at Jaeri, Japan. Taken off-axis to better match the oscillation maximum at the SuperKamiokande location (295 km). NCC (/100MeV/22.5kt/yr) 400 Energy of the max. of oscillation according to SK 90% allowed region 350 Off Axis 1 degree 300 0 OA 2 250 200 K2K 6 · 1012 JHF Protons per pulse 3 · 1014 2.2 s Cycle 3.4 s 12 GeV Proton energy 50 GeV 40 Events in SK per year (no osc.) 2200 1.5 Mean neutrino energy 0.8 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. Wide Band Beam 150 100 OA 30 50 0 0 1 11 2 3 4 5 E (GeV) Off Axis Neutrino Beams. BNL-E889 proposal: http://minos.phy.bnl.gov/nwg/papers/E889 Decay Kinematics ν(Εν) A qualitative argument: 0.06 θ π (mπ,pπ) • Transverse momentum, 0.03 (GeV/c) µ (mµ,pµ) From momentum energy conservation: m2π − m2µ Eν = 2(Eπ − pπ cosθ) invariant: momentum is Lorentz boosted. -0.03 • At an angle θ there is an 0 1 2 3 (GeV/c) θ = 0 mrad θ = 7 mrad θ = 14 mrad θ = 27 mrad mπ − mµ . • Longitudinal 0 -0.06 15 Lorentz accumulation of lower energies neutrinos Eν (GeV) • Maximum neutrino flux at 0◦ . • Off axis is the most efficient way to have a narrow band 10 beam. • νe come from 3 body decays (kaons or muons) while off-axis is optimized on the pion 2 body decay⇒ the νe contamination below the peak is reduced. 5 0 0 10 20 Eπ (GeV) 30 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 40 12 JHF (continued) Precision measure of the atmospheric parameters: • δm223 with a resolution of 10−4 eV2 . • sin2 2θ23 at 1 ÷ 2 %. Sensitivity to θ13 90% C.L. sensitivities -1 ∆m2(eV2) 10 1 -2 10 x20 10 -1 -3 10 0 1000 2000 3000 JHF 5years WBB OAB 2deg. NBB 2GeV CHOOZ excluded E (MeV) ν Ratio of the measured νµ spectrum with respect to the -4 10 10 -3 10 -2 non-oscillation prediction in case of oscillation (5 years). M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 13 10 -1 sin22θµe 1 δ m2 = 3 × 10 5 ears 1) 2) 3) 4) 2 enerated in F 1 e li e 0 e π0 se aration 0 4 e E ec 45 40 35 30 25 20 15 10 5 0 1.2 e 3 e 2 and sin2 2θ0 µe = 0.05 νµ C C ν µ C 10713 6 4080 3 14 3 247 1 35 23 0 18 93 eam νe 292 1 68 4 21 9 11 1 scillated νe 301 6 203 7 152 2 123 2 Expected Signal+BG Total BG BG from νµ 0 1 2 3 4 5 Reconstructed Eν(GeV) 80 70 60 50 40 30 20 10 0 20 17.5 15 12.5 10 7.5 5 2.5 0 0∝ 0 0.5 0e 0 0.5 1 60 50 40 30 20 10 0 cos00e 1 cos00e 90 80 70 60 50 40 30 20 10 0 0∝ 0 100 200 8 7 6 5 4 3 2 1 0 -500 200 25 20 15 10 5 0 -500 inv. mass (MeV) 100 0 0∝ 500 14 12 10 8 6 4 2 0 likelihood difference 0e 0 0∝ 0 0e inv. mass (MeV) 0 0.25 0.5 E(02)/(E(01)+E(02)) 0e 500 likelihood difference 25 20 15 10 5 0 0 0.25 0.5 E(02)/(E(01)+E(02)) o t e an tities sed in t e e/ 0 separation e eam is t e o 2 de ree eam and events are a ter t e sin le rin e li e selection pper isto rams corresponds to µ ac ro andis events and t e lo er isto rams correspond to t e e si nal events e arro s in t e re s o t e c t positions sed in t e anal sis Fi ure 9: istri tions M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 14 Separazione ντ − νsterili Tag delle correnti ◦ neutre con i π (metodo Vissani-Smirnov), usato anche in SK (ν + N → ν + N + π◦ ) π 0+ e-like events 1000 900 ν µν τ 800 700 600 Le sistematiche sulla sezione d’urto di produzione ◦ 500 π in eventi di NC verranno fortemente 400 ridotte dal close detector di K2K e dai close detectors 300 di JHF. 200 risonante di Limite alla frazione di νs a circa 0.1 (90% CL). ν µν s 100 0 10 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 390 +/− 44 -4 10 -3 15 10 -2 ∆m 2 10 -1 What about Numi and CNGS off-axis? CNGS off-axis (Dydak’s talk at Neutrino 2002) NuMi off-axis (LoI of 05/06/2002) • Use NuMi Medium Energy beam • Place a detector at ∼ 730 km, 9 km off-axis (0.7◦ ), that means NOT deep underground. • The far detector is not yet well specified however it should be: – 20 kton, fiducial = 85% of total. – Good π◦ rejection in the 1-3 GeV energy range (π ◦ bacground must be reduced below the level of beam νe contamination) – Cost below 100 M$ – Ready in 2008 (the JHF clock!) Under these conditions it could have a θ13 sensitivity similar to JHF. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. • Modify the CNGS in order to have a mean energy of 3.5 GeV (renouncing to any tau appearance experiment at LNGS or waiting for 2011). • Place a detector underwater, off-axis, in the Gulf of Taranto, in TWO positions corresponding to the SECOND oscillation maximum and minimum. • The detector should be made by 4000 PMTS, in a grid of 6m side, equipping a cone of 1 Mton of water (radius 110m, height 25 m). • With a coverage of 2% of the surface (SK has 40%) it should reduce the π◦ background to less than 1% of the νµCC (SK has 2.5% of π◦ with not optimized algorithms). • It should cost 100 M$ (???) • It should be ready in 2008 to compete with JHF 16 Leptonic CP Two conditions to make Leptonic CP detectable: • Solar LMA confirmed • θ13 ≥ 0.50 (see the following). A big step from a θ13 search: p(ν → ν ) = p(ν µ → ν e ) (direct CP) µ e from p(νµ → νe ) = 0 to p(νµ → νe ) = p(νe → νµ ) (T search) This will require: Super Beams 1. Neutrino beams of novel conception. Neutrino Factory Beta Beams 2. Detectors of unprecedent mass 3. Improved control of systematics ⇒ Dedicated experiments on neutrino cross-section, hadron production, particle ID. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 17 Detecting the δ phase at the Neutrino Factories AÆ = [P (ν → ν , δ = +π/2) − P (ν → ν , δ = 0)]/[P (δ = +π/2) + P (δ = 0)] Compare the measured νe → νµ oscillation probability, as a function of the neutrino energy Eν , to a “Monte-Carlo” prediction of the spectrum in absence of δ -phase. Problems: it’s model dependent, requires a precise knowledge of the other oscillation parameters, possible degeneracy between solutions and strong correlation with the θ13 parameter. A (δ) = [P (ν → ν , δ) − P (ν → ν , δ)]/[P (ν → ν , δ) + P (ν → ν , δ)] Compare the appearance of νµ (ν µ ) in a beam of stored µ+ ( µ− )decays as a function of the neutrino energy Eν . Problems It must compete with the fake CP from matter effects. Run time is more than doubled: ν cross sections are half the ν cross section and matter effects disfavor ν oscillations. A (δ) = [P (ν → ν , δ) − P (ν → ν , δ)]/[P (ν → ν , δ) + P (ν → ν , δ)] Compare the appearance of νµ in a νe beam AND νe in a νµ beam as a function of the neutrino energy Eν . Problems Electron charge must be measured in case of a neutrino factory experiment. Systematics of muon and electron efficiencies must be kept to very small values. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 18 Are CP-odd effects detectable? ACP sin 2θ12 P (ν e → ν µ ) − P (νe → νµ ) ∆m212 L = · sin δ · sin P (ν e → ν µ ) + P (νe → νµ ) sin θ13 4E ACP vanishes in the limit ∆m212 → 0 ACP ∝ sin 2θ12 Only the solar LMA solution allows a detectable ∆CP Latest SNO results are very much in favor of LMA, but the final worlds will come from the Kamland experiment, that’s running. LSND scenario: CP violation arises from interference between: • LSND frequency ∼ 0.3 to 2 eV 2 . • Atmospheric frequency ∼ 3 · 10−3 eV 2 . Amplitudes comparable at atmospheric baseline Near 100% CP asymmetry is possible M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 19 The delightful news from solar neutrino experiments 2 YEARS AGO NOW, AFTER SNO and KAMLAND 2 δm12 2 δm12 LMA - II LMA LMA - I Preferred by CP searches LOW QUAS I VACUUM maxima l mixing line maxima l mixing line 2 2 tan θ12 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. sin θ12 20 δ and θ13 interplay. P (ν → ν ) ∝ sin2 2θ13 A ∝ 1 sin 13 ⇓ sin2 2θ13 ≤ 10−3 ⇒ practically impossible to detect CP through νµ → νe transitions (see later). P (ν → ν ) ∝ sin2 To detect νµ ∆2 23 4 → νe transitions with high sensitivity are needed: sin2 2θ13 small ⇒ small statistics but big asymmetry. sin2 2θ13 big ⇒ high statistics but small asymmetry ⇓ Very clean neutrino beams. Very intense neutrino beams: The CNGS beam The two effects tend to balance BUT detector requirements are intensity is about two orders of magnitude very different in the two cases: high mass and reduced resolution smaller to what needed to run a CP search at against ”small” mass but high resolution. the appropriate baseline (∼ 8000 km) with enough statistics in a 50 kton detector. Very risky to start a CP search without knowing the real value of θ13 , certainly without knowing that sin2 2θ13 ≥ 10−3 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 21 δ and θ13 interplay (II). On the other hand any θ13 experiment not sensitive to CP can see the effect but cannot precisely measure θ13 . p(νe → νµ ) in the case of the JHF experiment, from hep-ex/0106019 Contributes to 10 JHF 2 295 km 10% syst. on backgrounds δ uncertitude δ m231 eV2 mass hyerarchy uncertitude 10 3 10 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 22 3 10 2 sin2 2θ 2 13 10 1 Neutrino Factories • The dream beam of every neutrino physicist. • The first case in which the whole neutrino production chain, including proton acceleration, is accounted on the budget of • Oscillated events Nosc at a distance L: Nosc ∼ Flux × σν × Posc ∼ Eν3 L2 sin2 L ∝ Eν Eν Nosc increases linearly with the beam energy. Optimal energy: as high as possible. • Beam intensities predicted to be two orders of magnitude higher than in traditional neutrino beams. • No hadronic MonteCarlos to predict neutrino fluxes. • Neutrino beams from muon decays contain ONLY two types of neutrinos of opposite helicities (ν e νµ or νe ν µ ). It is possible to search for νµ → νe transitions characterized by the Number of charged current interactions the neutrino beam construction. _ νµ P= +0.3 P= 0 P= −0.3 P= -1 0.2 0.4 νe 0.6 0.8 1 P= -1 P= −0.3 P= +0.3 0.2 0.4 0.6 Eν/Eµ appearance of WRONG SIGN MUONS, without intrinsic beam backgrounds. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. Polarization= +1 23 0.8 1 Why a Neutrino Factory is far more efficient of a conventional neutrino beam BCT1 Al Collimator SEMs BCT2 Reflector Horn CHORUS Muon Pits Decay Earth Tunnel Be Target 450 GeV/c protons TDX collimator Iron Shield NOMAD In a conventional neutrino beam, neutrinos are produced by pions (and kaons) generated by the proton beam interaction on the target. Given the short life time of the pions (2.6 · 10−8 s), they can only be focused (and charge selected) by means of magnetic horns. Then they are let to decay in a decay tunnel, short enough to prevent most of the muon decays. Hard to predict the details of the neutrino beam, since it derives from hadronic interactions. At least four neutrino flavours are present (νµ , ν µ , νe , ν e ) In a neutrino factory pions decay inside a solenoid, and most of the muons are collected. Muons are longeval enough (2.2 · 10−6 s) to open the possibility to collimate and accelerate them to the desired momentum. Much more efficient way to produce neutrinos BUT a real challenge to accelerate, in a very short time, particles generated with a large emittance . Two possible solutions, • Ionization cooling (stochastic cooling is too slow). • Very large aperture accelerators (FFAG) R&D. No need of hadronic MC to predict the fluxes and only two ν flavours in the beam Both solutions have never been implemented and require M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 24 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 25 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 26 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 27 The basic concept of a neutrino factory (the CERN scheme) • High power (4 MW) proton beam onto a liquid mercury target. • System for collection of the produced pions and their decay products, the muons. • Energy spread and transverse emittance have to be reduced: “phase rotation” and ionization cooling • Acceleration of the muon beam with a LINAC and Recirculating Linear Accelerators. • Muons are injected into a storage ring (decay ring), where they decay in long straight sections in order to deliver the desired neutrino beams. • GOAL: ≥ 1020 µ decays per straight section per year M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 28 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 29 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 30 Detector Iron calorimeter Magnetized Charge discrimination B=1T R = 10 m, L = 20 m Fiducial mass = 40 kT Also: L Arg detector: magnetized ICARUS Wrong sign muons, electrons, taus and NC evts Baseline 732 Km 3500 Km Events for 1 year CC e CC 3.5 x 107 5.9 x 107 1.2 x 106 2.4 x 106 signal (sin2 1.1 x 105 1.0 x 105 13=0.01) (cf 40 in JHF-SK) Alain Blondel, Venice, March 2003 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 31 Possible detectors 2): Liquid Argon TPC • The first 300 ton module is operational. • Excellent energy resolution, tracking, particle identification. • Difficult to scale to a multi-10kton detector. • Non trivial implementation of magnetic field: downstream spectrometers. The possibility to magnetize large, multikiloton volume of Argon is under study. • Conceptual possibility to measure the charge of electrons if the full volume is magnetized at 1 Tesla. • The best solution if redundant searches of oscillations are needed to overconstrain the mixing matrix. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 32 UNO detector • Fiducial volume: 440 kton: 20 times SuperK. • The killer detector for proton decay, atmospheric neutrinos, supernovae neutrinos. • Energy resolution is poor for multitrack events but quite adequate for sub-GeV neutrino interactions. • Difficult implementation of magnetic field: downstream spectrometers. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 33 A problem ... Oscillated events Nosc at a distance L: Nosc ∼ Flux × σν × Posc Eν3 2 L ∼ 2 sin ∝ Eν L Eν Nosc increases linearly with the beam energy. ⇒ Optimal energy: as high as possible. ⇓ High Neutrino Energies ⇒ Long Baselines ⇒ Matter Effects M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 34 Can genuine CP effects be separated from matter effects? From Genuine CP-odd, V. Barger et al., hep-ph/0003184. δ driven effects can be decoupled from matter effects, but paying a high price: 100 10 2 ∆m32<0 1. The experiment must be run at a baseline much shorter than the optimal one. 2. A strong correlation between δ and θ13 . 3. The experimental result is affected by the uncertitude on the other parameters of the 1 Matter Effect 0.1 0.01 2 ∆m32 >0 CP violation Stat errors for 21 10 decays mixing matrix and by the uncertitude on the matter density along the beam line. 2000 4000 6000 8000 Baseline (Km) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 35 Simultaneous fits at δ e θ13 (from Nucl.Phys. B608(2001)301) L = 2810 Km L = 732 Km δ ** 150 * * ** * ** * ** * 150 δ 100 100 ** 50 50 0 0 * −50 −50 ** −100 −100 −150 −150 * * 2 7 6 8 9 θ13 L = 7332 Km * ** ** 10 θ 13 100 * * 50 50 ** 0 ** * Λ 7332 * −50 −50 −100 * 8 δ 150 δ 0 6 L = 2810 Km + L = 7332 Km * 150 100 4 10 ** ** −100 −150 * * −150 * * 2 4 6 **8 10 *2 4 *8 10 θ 13 θ13 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 6 36 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 37 Precision measurements at the Neutrino Factories Measure the atmospheric Improve up to 4 orders of magnitude the Chooz Measure the sensitivity on θ13 ∆m223 parameters at 1%. sign 0.006 0.005 7332 km 732 km 3000 km 0.004 ∆ m223 0.003 0.002 0.001 5 10 7 10 6 5 10 6 10 sin2θ13 5 5 10 5 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 38 Final Sensitivity • Matter effects must be separated from genuine kton large magnetic detector (full simulation, full 99%CL max CP (δ = π/2) from no CP (δ = 0) computed as function of the two critical parameters θ13 and δm212 1 21 2 • Strong correlations in the simultaneus fit of θ13 and δ. • The errors of all the other mixing matrix parameters influence the precision of the measure of δ . On the other hand a ν F can measure θ23 e ∆m223 at 1% through the νµ disappearance. • Backgrounds ed efficiencies computed for a 40 CP sensitivity, defined as the capacity to separate at Nufact, 10 ∆m122(x10 -4 ) eV CP-odd effects. 0.8 0.6 Icarus, 732 km, 10 kton, 10 reconstruction). • (J. Burguet-Castell et al., Nucl. Phys. B 608 (2001) µ decays, L=2810+7332 21 µ decays, 90 % CL 0.4 301 ) 0.2 Two detectors at two different baselines are the 0 0 1 2 4 5 6 7 θ13(degree) optimal solution for the Leptonic CP detection. Best combination: 3000+7000 km. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 3 39 8 SuperBeams (1) - JHF phase 2 Upgrade the proton driver from 0.75 MW to 4 MW Upgrade SuperKamiokande by a factor 40 =⇒ HyperKamiokande M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 40 Interesting features of a low energy conventional neutrino beam. ν beam: • Eνµ 0.25 GeV • νe production by kaons largely suppressed by threshold effects. νe in the beam come only from µ decays. π + −→ µ νµ e+ νe ν µ they can be predicted from large detectors are necessary in νµ CC spite of the very intense neutrino the + ⇒ Less exiting aspects of a low energy neutrino beam • Cross sections are small ⇒ measured spectrum both at the close and at the far detector with beam. • ν µ production is disfavored for two reasons: a small systematic error of – Smaller ∼ 2%. Detector Backgrounds • Good e/π 0 separation following the large π0 → γγ opening angle • Good e/µ separation in a Čerenkov detector because µ are produced below or just above the Čerenkov threshold. target. – ν µ /νµ cross section ratio is at a minimum (1/5). • Visible energy is smeared out by Fermi motion • Charm and τ production below threshold. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. π− multiplicity at the 41 A feasibility study of the CERN possible developments 20 m ν/100 m2/20 MeV SPL-SuperBeam at CERN ν 10 13 10 12 10 11 10 10 Flux Eν(GeV) νe 2.16E+12 0.32 0.668 νµ 5.16E+12 0.28 1.598 νe 1.24E+10 0.29 0.004 10 9 10 8 10 7 10 6 Decay Tunnel Near Detector 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ν intensities M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 1 at 50 km from the target Absolute Flux Rel. Flux E ν (ν/1023 pot/m2 ) (%) (GeV) νµ 3.2 · 1012 100 0.27 νµ 2.2 · 1010 1.6 0.28 νe 5.2 · 109 0.67 0.32 νe 1.2 · 108 0.004 0.29 Flavour Far Detector Possible Low Energy Super Beam Layout 0.9 Eν(GeV) Flux km 130 (%) νµ 3.23E+14 0.27 42 MW-Linac: SPL (Superconducting Proton Linac) 45 keV 7 MeV 120 MeV 1.08 GeV 2.2 GeV 13m 3 MeV 78m 18MeV 334m 345m 237MeV 389MeV - RFQ1 chop. RFQ2 DTL CCDTL RFQ1 chop. RFQ2 RFQ1 chop. RFQ2 β 0.52 β 0.7 β 0.8 LEP-II H Source Low Energy section DTL Re-use superconducting LEP cavities cavities dump Superconducting section Stretching and collimation line PS / Isolde Accumulator Ring EKIN = 2.2 GeV Power = 4 MW Protons/s = 10 16 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 23 10 protons/year 43 UNO detector • Fiducial volume: 440 kton: 20 times SuperK. • 60000 PMTs (20”) in the inner detector, 15000 PMTs in the outer veto detector. • The killer detector for proton decay, atmospheric neutrinos, supernovae neutrinos. • Energy resolution is poor for multitrack events but quite adequate for sub-GeV neutrino interactions. • It would be hosted at the Frejus laboratory, 130 km from CERN, in a 106 m3 cavern to be excavated. • Quoted at 500M$ (including excavation) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 44 2 δ and θ13 interplay: P (νµ → νe ) ∝ sin 2θ13 ACP = P( νµ - νe ) x 10 ∝ P( νµ - νe ) 0.04 P(ν µ -ν e) P(ν µ -ν e) N (e+ )−N (e− ) N (e+ )+N (e− ) 0.03 0.04 0.03 0.02 0.02 0.01 0.01 0 0 -0.01 -0.01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 0.1 0.2 0.3 0.4 0.5 δ 150 100 50 0 -50 -100 -150 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 1 0.7 0.8 0.9 1 Eν (GeV) Eν (GeV) 0 0.6 2 3 4 5 6 7 45 8 θ 13 1 sin θ13 δ 150 Sensitivity depends also by ∆m 212 -4 2 2 ∆m = 1.5 10 eV 12 100 P( νµ - νe ) P(ν µ -ν e) 50 0 -50 0.025 0.02 -100 0.015 -150 0.01 δ 0.005 150 -4 2 ∆m = 0.7 10 eV 12 100 0 2 -0.005 50 -0.01 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 P( νµ - νe ) -50 P(ν µ -ν e) -100 -150 δ 0.1 0.9 1 0.9 1 Eν (GeV) 0.012 0.01 0.008 150 -4 2 100 ∆m = 0.2 10 eV 12 2 0.006 50 0.004 0 0.002 -50 0 -100 0 -150 0 1 2 3 4 5 6 7 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 0.1 0.2 0.3 0.4 8 θ13 46 Eν (GeV) (solars) A comparison of CP sensitivities: Nufact vs. SuperBeam CP sensitivity, defined as the capacity to separate at 99%CL max CP (δ = π/2) from no CP (δ = 0). The limiting factors for the SuperBeam at small Nufact and SPL-SuperBeam sensitivities computed with the same ∆m122(x10-4) eV2 conditions. θ13 values are: • The low flux of ν and their small cross section. This limits the overall statistic. Nufact • The beam related backgrounds that increase SuperBeam the statistical errors, hiding the CP signal. 1 θ13 =3◦ , δm212 0.7 · 10−4 eV 2 , sin2 2θ12 = 0.8: As Best LMA, hep-ph/0212127 an example for 0.5 µCC (no osc) 0 0 1 2 3 4 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 5 6 7 8 θ 13 (degrees) Oscillated events (total) Oscillated events (cp-odd) Intrinsic beam background Detector backgrounds 47 = νµ beam ν µ beam 2 years 36698 45 -84 140 36 8 years 23320 133 53 101 49 SuperBeam vs. Nufact PROS • Negligible matter effects: it can be run at the optimal baseline • Negligible matter effects: reduced correlations between θ13 and δ • Counting experiment: less influenced by uncertitudes on the other mixing matrix parameters CONS • Smaller CC rate • Intrinsic beam contamination M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 48 Can the SuperBeam+UNO combination be upgraded? YES with a novel concept of neutrino beam: BETA BEAM. (P. Zucchelli: Phys. Lett. B532:166, 2002) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 49 Beta Beam (P. Zucchelli: Phys. Lett. B532:166, 2002) Muons are not the only unstable particles that decay into neutrinos, there are also β emitter nuclei. As for the neutrino factory the neutrino spectrum is completely defined by the parent decay properties and by the Lorentz boost γ . To produce a Beta Beam: β radioactive ions with a lifetime of the order of ∼ 1s. Best candidate: 6 He, β − emitter (E0 3.5 M eV , T /2 0.8 s). 1. Produce 2. Accelerate them to high energies in a conventional way (PS). 3. Accumulate them in a decay ring with long straight sections (SPS like). 4. Just ONE neutrino flavour is produced: ν or ν . M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. CERN ISOLDE, if injected by SPL, could produce 7 · 1013 6 He/s by using 1/8 of the SPL duty cycle. PS + SPS (modified to have 2.5 km long straight sections). Today they are already accelerating heavy ions up to γ = 150. The complexity of the FAST muon acceleration is absent (simply 4 × 105 more time). It is technologically feasible to build neutrino beams with intensities comparable with SuperBeams. CERN is the only place with the complete Beta Beam know-how: • Isotopes production (ISOLDE) • Ion acceleration (PS+SPS+LHC) • Neutrino Experiments (EP) 50 A Beta Beam sketch M. Lindroos and collaborators, see http://beta-beam.web.ch/beta-beam SPL ISOL target & Ion source Decay Ring SPS Cyclotrons Storage ring and fast cycling synchrotron PS • 1 ISOL target to produce HE6 , 100 µA, ⇒ 2.9 · 1018 ion decays/straight session/year. Source of νe . • 3 ISOL targets to produce Ne18 , 100 µA, ⇒ 1.1 · 1018 ion decays/straight session/year. Source of νe . • The 4 targets could run in parallel. M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 51 Optimizing the Lorentz Boost γ (L=130 km): preferred value: γ = 75 Background rate rises much faster than CC More collimated neutrino production and higher cross interactions sections. 20 From resonant pion production in 17.5 15 12.5 10 7.5 5 2.5 60 80 100 120 140 γ 1.2 1 1000 800 600 400 200 0 50 60 70 80 90 100 110 120 130 140 150 γ Detection efficiency as function of ν energy Efficiency ν flux must match the CP-odd oscillating term a.u. νe NC interactions 1200 π+ in 4400 kton yr at 130 km CC Rate (a.u.) Higher γ produce more CC interactions 1.0 Std. Particle ID 0.8 + decay electron 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Eν (GeV) M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 100 150 200 52 250 400 350 300 Neutrino Energy (MeV) The SuperBeam - BetaBeam synergy Run two neutrino beams to the same detector at the same time. Both beams need SPL, but the BetaBeam requires at most 12% of the SPL protons → the two beams can run together. Both beams produce sub-GeV neutrinos → same baseline and same detector. CP, T and CPT searches at the same time !!!! M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 53 The SuperBeam - BetaBeam synergy: CP, T and CPT No other realistic scenario can offer CP, T and CPT searches at the same time in the same detector!!!! CP Searches • SuperBeam running with νµ and ν µ . • Beta Beam running with 6 He (ν e ) and 18 Ne (νe ). T searches • Compare Super Beam p(νµ → νe ) with Beta Beam 18 Ne p(νe → νµ ) • Compare Super Beam p(ν µ → ν e ) with Beta Beam 6 He p(ν e → ν µ ). CPT searches • Compare Super Beam p(νµ → νe ) with Beta Beam 6 He p(ν e → ν µ ). • Compare Super Beam p(ν µ → ν e ) with Beta Beam 18 Ne p(νe → νµ ) In case of small values of θ13 the most powerful combination to discover Leptonic CP would be however a single T search with neutrinos (SuperBeam νµ with BetaBeam νe ). M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 54 Beta Beam Super Beam synergy: results δ SUPER BEAM ONLY 150 100 50 δm212 = 7 · 10−5 eV 2 , θ13 = 4◦ , δCP = −π/2 0 -50 10 yrs (4400 kton/yr) SuperBeam Beta Beam -100 νµ -150 0 1 2 3 4 5 6 7 νe (8 yrs) (He 6 ) (Ne18 ) 36698 23320 40783 55749 Total oscillated 314 67 193 117 CP-Odd oscillated 102 -64 61 -95 Beam background 141 113 / / 37 50 60 31 CC events (no osc, no cut) δ νe (2 yrs) 8 θ13 SUPER BEAM + BETA BEAM νµ 150 100 50 Detector bkg. 0 -50 -100 -150 0 1 2 3 4 5 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. 6 7 8 θ13 55 Final CP sensitivity. ∆m122(x10-4) eV2 After Moriond, very preliminary Nufact SPL SuperBeam Beta Beam SB+BB, 440 kton 1 SB+BB, 1 Mton Best LMA, hep-ph/0212127 0.5 JHF Phase I sensitivity on θ13 0 10 M. Mezzetto, Lezioni Dottorato di Ricerca, Padova, aprile 2003. -4 10 -3 -2 10 2 sin θ 13 56
Documenti analoghi
Atmospheric neutrinos
> 20xy Signal of Earth matter effects and of ν mass hierarchy
> 20xz Background to diffuse SN neutrino signal
>20yz Signal of nonstandard neutrino states or interaction?
>20wx Background to proton ...