Taylor`s expansions - Proposed Exercises
Transcript
Taylor`s expansions - Proposed Exercises
Taylor’s expansions - Proposed Exercises 1. Compute the Taylor’s expansion of order n in x0 of the following functions: (a) f (x) = 2x (n = 4, x0 = 0) (b) f (x) = log (4 − x2 ) 2 (n = 3, x0 = 1) (c) f (x) = sin x − sin x2 (n = 4, x0 = 0) n = 4, x0 = π2 n = 2 , x0 = π3 . (d) f (x) = sin x (e) f (x) = sin x 2. Compute the principal part with respect to the sample 1/x or x: 1 1 (a) f (x) = e x − esin x , x → +∞ (b) f (x) = sin (sin x) − x cos x, x→0 (c) f (x) = sin x cos 2x + sin 2x − 1 , x→0 (d) f (x) = sin x x − log(1 + x) , x → 0. 3. Compute the following limits using Taylor’s expansions: 2 ex − cos x − 23 x2 x→0 x4 2 sin x − sin x2 (b) lim 2 x→0 x log (cos x) (a) lim 2 51+tan x − 5 (c) lim x→0 1 − cos x 1 (1 + x) x − e x→0 x 1 sin x x2 (e) lim x→0 x 1 2 (f) lim x − x log 1 + sin x→+∞ x (d) lim ex − 1 + log (1 − x) x→0 tan x − x 1 1 1 − (h) lim . x→0 x sin x x (g) lim 1 Solutions 1 1 1 1. (a) f (x) = 1 + x log 2 + x2 log2 2 + x3 log3 2 + x4 log4 2 + o x4 , x → 0; 2 24 6 (b) f (x) = 5 + 4(x − 1) + o (x − 1)2 , x → 1; 1 (c) f (x) = − x4 + o x4 , x → 0; 3 π 2 π 4 π 1 π 4 1 x− x− , x→ ; + +o x− (d) f (x) = 1 − 2 2 √ 2 2 24√ 2 3 1 3 π π 2 π π 2 x− − x− , x→ . +o x− + (e) f (x) = 2 2 3 4 3 3 3 2. (a) 1 1 , 6 x3 3. (a) 11 1 2 e 1 1 1 ; (b) ; (c) 10 log 5; (d) − ; (e) e− 6 ; (f) ; (g) − ; (h) . 24 3 2 2 2 6 x → +∞; (b) 1 3 x , 6 x → 0; (c) 2x2 , x → 0; (d) 2 1 3 x , 2 x → 0.
Documenti analoghi
carmichael
. Banks, Ford, Luca, FP & Shparlinski (2004)
+ Ak (x) ≥ x19/27k for k ≥ 2
+ Dickson’s k–tuples Conjecture implies #Ar,1 = ∞
+ Schinzel’s Hypothesis H implies #Ar,1 = ∞
+ The set {log ϕ(n)/ log λ(n)...