MP2 Description of Solids: The CRYSCOR Project
Transcript
MP2 Description of Solids: The CRYSCOR Project
MP2 Description of Solids: The CRYSCOR Project Lorenzo Maschio [email protected] Dipartimento di Chimica and NIS centre, University of Torino, Italy The Regensburg group C. Pisani S. Casassa L. Maschio M. Schütz D. Usvyat Lorenzo Maschio The CRYSCOR Project 2 1. Local correlation methods If the doors of perception were cleansed, every thing would appear to man as it is, infinite. W. Blake Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. i occupied orbital In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. virtual space i occupied orbital In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. virtual space i occupied orbital i virtual space occupied orbital In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. i In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 Local correlation methods Occupied and virtual space in post-HF methods are truncated according to distance criteria. j i In the original formulation,[1,2] the virtual space is represented by Projected Atomic Orbitals (PAOs) P. Pulay, Chem. Phys. Lett. 100,151 (1983) M. Schutz, G.Hetzer, H.-J. Werner, JCP 111, 5691 (1999) 1 2. Local correlation methods for periodic systems Tyger! Tyger! Burning bright In the forests of the night: What immortal hand or eye Could frame thy fearful symmetry? W. Blake In Solids In a crystalline solid everything is infinite. 2 In Solids In a crystalline solid everything is infinite. But we can refer to the unit cell. 2 In Solids The reference occupied orbital is in the unit cell… i 2 In Solids And other local objects are selected in its neighborhood. i 2 In Solids And other local objects are selected in its neighborhood. j i 2 Some equations The MP2 is an energy per cell, including orbital pairs near that cell We have to minimize the “residuals” 3 Some equations In the PAO basis residuals take a more complicated form 4 Local Correlation in Crystals C. Pisani, S. Casassa, L. Maschio M. Schütz, D. Usvyat [1-3] Implements LMP2, F12-LMP2,[4] LCIS[5] [1] C. Pisani, M. Busso, G. Capecchi, S. Casassa, R. Dovesi, LM, C. Zicovich-Wilson, M. Schütz JCP 122, 094113 (2005) [2] C. Pisani, LM, S. Casassa, M. Halo, M. Schütz, D. Usvyat, JCC 29 (2008) 2113. [3] C. Pisani, M. Schütz, S. Casassa, D. Usvyat, LM, M. Lorenz, A. Erba, PCCP, 14, 7615-7628 (2012) [4] D. Usvyat, JCP 139, 194101 (2013) [5] M. Lorenz, LM, M. Schütz, D. Usvyat, JCP137, 204119 (2012) 5 Local Correlation in Crystals C. Pisani, S. Casassa, L. Maschio M. Schütz, D. Usvyat [1-3] R. Dovesi et al. [6] Implements LMP2, F12-LMP2,[4] LCIS[5] HF solution from [1] C. Pisani, M. Busso, G. Capecchi, S. Casassa, R. Dovesi, LM, C. Zicovich-Wilson, M. Schütz JCP 122, 094113 (2005) [2] C. Pisani, LM, S. Casassa, M. Halo, M. Schütz, D. Usvyat, JCC 29 (2008) 2113. [3] C. Pisani, M. Schütz, S. Casassa, D. Usvyat, LM, M. Lorenz, A. Erba, PCCP, 14, 7615-7628 (2012) [4] D. Usvyat, JCP 139, 194101 (2013) [5] M. Lorenz, LM, M. Schütz, D. Usvyat, JCP137, 204119 (2012) [6] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, LM, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noël, M. Causà, M. Rérat, B. Kirtman, IJQC, 114 (2014) 1287-1317. 6 Rare Gas Crystals: Argon Basis set: [4s4p3d1f(2f)] Casassa, Halo, Maschio, Journal of Physics: Conference Series 117 (2008) M.Halo, S.Casassa, L.Maschio and C.Pisani, Chem. Phys. Lett. 467 (2009) 294–298 M.Halo, S.Casassa, L.Maschio and C.Pisani, PCCP 11( 2009) 568–574 7 Molecular Crystals CO2 L. Maschio, D. Usvyat, M. Schuetz, B. Civalleri, J. Chem. Phys. 132, 134706 (2010) L. Maschio, D. Usvyat and B. Civalleri CrystEngComm, 12, 2429 (2010) L. Maschio, B. Civalleri, P. Ugliengo and A. Gavezzotti, J. Phys. Chem. A, 115 (41), 11179–11186 (2011) NH3 8 Strategy • Use Gaussian functions as a basis set • Aim at general, black-box, robust methods and clean implementation. • Implement local correlation methods for periodic systems. Lorenzo Maschio The CRYSCOR Project 2 9 Strategy • Use Gaussian functions as a basis set • Aim at general, black-box, robust methods and clean implementation. • Implement local correlation methods for periodic systems. With Density Fitting. LM, D. Usvyat, C. Pisani, F. Manby, S. Casassa, M. Schütz, PRB. 76, 075101 (2007) LM, D. Usvyat, PRB 78, 073102 (2008) M. Schütz, D. Usvyat, M. Lorenz, C. Pisani, LM, S. Casassa, M. Halo, In: Accurate CondensedPhase Quantum Chemistry. p. 29-55, New York:CRC press - Taylor and Francis Group (2010) Lorenzo Maschio The CRYSCOR Project 10 2 Applications of CRYSCOR ■ ■ ■ ■ ■ ■ Rare Gas Crystals.[1] Molecular crystals. [2,3,4] Molecules and atoms on surfaces [5,6,7,8] Relative stability of crystalline phases[9,10] Compton scattering phenomena in crystalline systems[11,12] Nanostructures and nanotubes [1] M. Halo, S. Casassa, LM, C. Pisani, CPL 467, 294-298 (2009) [2] LM, B. Civalleri, P. Ugliengo, A. Gavezzotti, JPCA, 115, 11179 (2011) [3] LM; Usvyat, D.; Civalleri, B., CrystEngComm, 12, 2429–2435 (2010). [4] LM; Usvyat, D.; Schutz, M.; Civalleri, B. JCP 132, 134706 (2011) [5] Z. Huesges, C. Mueller, B. Paulus, LM Surf. Sci. 627, 11-15 (2014), [6] D.Usvyat, K. Sadeghian, LM, M. Schütz PRB 86, 045412 (2012) [7] Halo, M.; Casassa, S.; LM; Pisani, C.; Dovesi, R.; Ehinon, D.; Baraille, I.; Rèrat, M.; Usvyat, D., PCCP 13, 4434 (2011). [8] Martinez-Casado, R.; Mallia, G.; Usvyat, D.; LM; Casassa, S.; Schuetz, M.; Harrison, N. M. , JCP 134, 014706 (2011). [9] Halo, M.; Pisani, C.; LM; Casassa, S.; Schuetz, M.; Usvyat, D., PRB 83, 035117 (2011). [10] Erba, A.; LM; Salustro, S.; Casassa, S. , JCP 134, 074502 (2011). [11] Erba, A.; LM; Casassa, S.; Pisani, C., PRB 84, 012101 (2011) [12] Erba, A.; Itou, M.; Sakurai, Y.; Ito, M.; Casassa, S.; LM; Terentjevs, A.; Pisani, C., PRB 83, 125208 (2011). 11 The problem of integrals evaluation The bottleneck of the whole Local-MP2 method is represented by the calculation of 4 index integrals, which constitutes by itself about 99% of the whole time needed for a calculation. The computational time amounts to several days even for the simplest system. This is due to the four index contraction over atomic orbitals needed to compute this integral between composite objects. In order to be able to study systems of general interest it is mandatory to implement fast techniques to approximate these integrals. 12 The problem of integrals evaluation The bottleneck of the whole Local-MP2 method is represented by the calculation of 4 index integrals, which constitutes by itself about 99% of the whole time needed for a calculation. The computational time amounts to several days even for the simplest system. This is due to the four index contraction over atomic orbitals needed to compute this integral between composite objects. Virtuals Occupied In order to be able to study systems of general interest it is mandatory to implement fast techniques to approximate these integrals. 13 Multipolar integrals The product distribution between Wannier function i and PAO a can be represented by a set of electric multipoles, , of maximum order l and centered in C. Pisani, Capecchi, Casassa and Maschio, Mol. Phys 103-18(2005) 2527-2536 If the two distributions are sufficiently apart to be entirely contained in separate spheres, their electrostatic interaction can be approximated by a sum of interactions between the respective multipoles : Due to translational invariance only the multipoles in the zero cell need to be computed, all the others being the same. Multipoles can be safely used for distances larger than 6 Å. Attention must be paid in the case of extended (augmented) basis sets and/or very large excitation domains. A hierarchy of integrals Extrapolation to infinity Multipolar expansion Density Fitting Density fitting Schuetz, Manby, PCCP (2003) 5, 3349-3358 Density Fitting is a powerful technique for integral evaluation that has widely proved its efficiency in molecular codes like MOLPRO. The basic idea is to expand product distributions in an Auxiliary Basis (e.g. gaussian functions ). We will from now on refer to these functions with latin capital letters P,Q. Fitting coefficients are determined by minimizing the error functional leading to the linear equation system 14 Density fitting So that the 4-index integrals are finally approximated as : Only 3-center Coulomb integrals are needed. where: The inverse matrix of 2-center coulomb integrals has the size of the number of auxiliary functions in the system. and: 15 Performance of Density Fitting Basis set Time LMP2 Time DF-LMP2 % Error on Energy 6-21G* 16 days 4 min. 0.03% Ice 6-311G** 4 days 15 min. 0.01% CO2 6-311G(3d) 2 days 30 min. 0.01% MgO 8-511G*/8-411G* 19 h. 8 min. 0.01% Ar ECP/[4s4p3d2f] 10 days 5 min. 0.02% System Diamond L. Maschio, D. Usvyat, C. Pisani, F. Manby, S. Casassa, M. Schütz, Phys. Rev. B 76, 075101 (2007). D. Usvyat, L. Maschio, F. Manby, M. Schütz, S. Casassa, C. Pisani, Phys. Rev. B 76, 075102 (2007). L. Maschio, and D. Usvyat, Phys. Rev. B 78, 073102 (2008). 16 3. Parallelization In Xanadu did Kubla Khan A stately pleasure-dome decree: Where Alph, the sacred river, ran Through caverns measureless to man Down to a sunless sea. S. T. Coleridge Parallel LMP2 Lorenzo Maschio The CRYSCOR Project 17 2 Parallel LMP2 18 Parallel LMP2 Double-walled fully Hydrogenated nanotube. 144 atoms per unit cell 1944 basis functions per cell basis: aug(p,d)-cc-pVDZ L. Maschio, JCTC, 7, 2818 (2011). J. Tanskanen, L. Maschio, A. Karttunen, M. Linnolahti, T. Pakkanen, ChemPhysChem, 13, 2361 (2012) Lorenzo Maschio The CRYSCOR Project 19 2 Parallel LMP2 Running on 48 processors Total time: 28 hours Aspirin molecule adsorbed on a 10 Angstrom thick SiO2 slab 141 atoms per unit cell, 2465 basis functions per cell basis: 88-31G* on Si and O atoms in the slab, TZP on the molecule’s atoms Lorenzo Maschio The CRYSCOR Project 20 2 Parallel LMP2 MOF-5 3D framework 106 atoms per unit cell, 2884 basis functions per cell, 532 correlated electrons basis: cc-pVTZ with ECPs on Zn atom Running on 54 processors Total time: 23 hours Lorenzo Maschio The CRYSCOR Project 21 2 Partial summary We have efficient and general density-fitted PAObased LMP2, F12-LMP2 and LCIS methods • • Fairly large unit cells can be tackled. However, it is not simple to deal with such systems due to the need for a definition on truncation thresholds and excitation domains. Lorenzo Maschio The CRYSCOR Project 22 2 4. Towards black-box methods: the pair screening Through the window I see no star: Something more near Though deeper within darkness Is entering the loneliness. T. Hughes The problem of pair truncation How to choose a safe threshold for integrals? j i 23 The problem of pair truncation How to choose a safe threshold for integrals? j i 24 The problem of pair truncation How to choose a safe threshold for integrals? Neglect Weak pairs Distant pairs j i 25 CO2 crystal Vs Ge crystal How to choose a safe threshold? 10 -3 ∆ Ecorr / hartree Ge CO2 10 -4 N DF =2136, N Mult =21604 N DF =1460, N 10 -5 N DF =19524, N 10 -6 3 4 5 6 7 8 9 10 11 Mult =1056 Mult =4216 12 13 Rdist / Angstrom Lorenzo Maschio The CRYSCOR Project 26 2 A simple quasi-population criterion D. Kats, JCP 141, 244101 (2014) The mutual penetration of the WFs i and j (and thus the densities φiφa and φjφb) can be estimated by the products of the atomic populations of the individual WF densities: Lorenzo Maschio The CRYSCOR Project 27 2 CO2 crystal Vs Ge crystal -10 -6 N DF =1608, N Mult =22132 ∆ Ecorr / hartree -10 -5 -10 N DF =628, N -4 Mult Ge CO2 -10 -3 -10 -2 =1888 10 -5 10 -6 10 -7 WFs tolerance Lorenzo Maschio The CRYSCOR Project 28 2 4. Towards black-box methods: Orbital-Specific Virtuals Water, water, everywhere, Nor any drop to drink. S. T. Coleridge A dinner for a couple of friends: PAO domains are affordable 29 A dinner for a couple of friends: PAO domains are affordable A dinner for a hundred (or more) guests: the OSV (or PNO) buffet 30 PNOs and OSVs Pair Natural Orbitals: diagonalization of the MP2-like density matrix Orbital Specific Virtuals: diagonalization of the diagonal MP2 amplitudes • • Faster MP2 (fewer virtuals) Quasi-Black Box P. Pulay (unpublished) J. Yang, Y. Kurashige, F. R. Manby, G. K. L. Chan, JCP. 134 (2011) 044123. J. Yang, G. K. Chan, F. R. Manby, M. Schutz, H.-J. Werner, JCP 136 (2012) 144105. Lorenzo Maschio The CRYSCOR Project 31 2 PNOs and OSVs Pair Natural Orbitals: pair-dependent Orbital Specific Virtuals: occupied orbital—dependent Projected Atomic Orbitals: pair/orbital—independent P. Pulay (unpublished) J. Yang, Y. Kurashige, F. R. Manby, G. K. L. Chan, JCP. 134 (2011) 044123. J. Yang, G. K. Chan, F. R. Manby, M. Schutz, H.-J. Werner, JCP 136 (2012) 144105. Lorenzo Maschio The CRYSCOR Project 32 2 OSVs in CRYSCOR D.Usvyat, L. Maschio, M. Schütz, JCP. 143 (2015) 102805 Results converge fast to most accurate PAO calculation with big domains… …but with a considerably reduced number of virtuals! 33 OSVs in CRYSCOR: smooth potential surfaces Black Phosphorus LMP2 p_tzvpp2(3d1f)[2d1f] 1) lattice parameters bfixed=10.42 [Å] b a fit c a=3.27 [Å] c=4.36 [Å] 34 smooth potential surfaces=geometry optimisation? Geometry optimisation LMP2 p_tzvpp2(3d1f)[2d1f] 2) internal coordinates x/afixed=0. 1 irreducible atom for symmetry y/b=0.10339 fit z/c=0.07863 35 Conclusions - Cryscor allows for Local MP2, CIS and F12-MP2 calculations starting from the CRYSTAL wavefunction - Can be done either on top of HF or DFT (doublehybrids) - New developments move towards better performance, “black box” use and wider applicability 36 …coming soon… New release hopefully by the end of 2015 37 (Further) Acknowledgments PhD students in Torino Simone Salustro Giuseppe Sansone Other collaborators (in random order) - Nic Harrison, Giuseppe Mallia (London, UK) Ruth Martinez-Casado (Madrid, Spain) Antti Karttunen (Aalto University, Finland) Andreas Savin, Julien Toulouse (Paris, France) Beate Paulus (Berlin, Germany) Maosheng Miao (CSU Northridge, US) Bernard Kirtman (Santa Barbara, US) Alfonso Pedone, Davide Presti (Modena, Italy) 38 Thank you for your attention [email protected]
Documenti analoghi
Climbing the Jacob`s ladder of dispersion-corrected DFT
in computational chemistry but the first results
reported in literature denote the accuracy of such
methods to describe long-range interactions, with
respect to more approximated ones. An important...